108
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Geometry of dimples and its correlation with mechanical properties in high-strength bainitic steel

ORCID Icon
Pages 421-451 | Received 28 Jul 2023, Accepted 08 Jan 2024, Published online: 15 Feb 2024

References

  • H.K.D.H. Bhadeshia, Nanostructured bainite, Proc. R Soc. A: Math, Phys. Eng. Sci. 466(2113) (2010), pp. 3–18.
  • C. Garcia–Mateo, F.G. Caballero, T. Sourmail, M. Kuntz, J. Cornide, V. Smanio, and R. Elvira, Tensile behaviour of a nanocrystalline bainitic steel containing 3 wt.% silicon, Mater. Sci. Eng. A 549 (2012), pp. 185–192.
  • W. Solano–Alvarez, E.J. Pickering, and H.K.D.H. Bhadeshia, Degradation of nanostructured bainitic steel under rolling contact fatigue, Mater. Sci. Eng. A 617 (2014), pp. 156–164.
  • C. Garcia–Mateo, G. Paul, M.C. Somani, D.A. Porter, L. Bracke, A. Latz, C. Garcia De Andres, and F.G. Caballero, Transferring nanoscale bainite concept to lower C contents: a perspective, Metals 7(5) (2017), pp. 159.
  • S.I. Lee, S.H. Shin, and B. Hwang, Application of artificial neural network to the prediction of tensile properties in high–strength low–carbon bainitic steels, Metals 11(8) (2021), pp. 1314.
  • H.K. Sung, S.Y. Shin, B. Hwang, C.G. Lee, N.J. Kim, and S. Lee, Effects of rolling and cooling conditions on microstructure and tensile and Charpy impact properties of ultra-low-carbon high-strength bainitic steels, Metall. Mater. Trans. A 42(7) (2011), pp. 1827–1835.
  • X. Xi, J. Wang, L. Chen, and Z. Wang, Tailoring mechanical properties of a low carbon Cu-containing structural steel by two-step intercritical heat treatment, Metals Mater. Int. 25(6) (2019), pp. 1477–1487.
  • C.P. Massey, D.T. Hoelzer, K.A. Unocic, Y.N. Osetskiy, P.D. Edmondson, B. Gault, S.J. Zinkle, and K.A. Terrani, Extensive nanoprecipitate morphology transformation in a nanostructured ferritic alloy due to extreme thermomechanical processing, Acta Mater. 200 (2020), pp. 922–931.
  • N. Ishikawa, J. Shimamura, K. Yasuda, H. Nakamichi, S. Endo, and S Tsuyama, Microstructural Aspects of Bainite-MA Type Dual-phase Steel for the Strain-based Design in Terms of Deformation and Fracture, Proceedings of the 24th International Offshore and Polar Engineering Conference, (ISOPE), Busan, Korea, 15–20, 2014, pp. 505–512.
  • T. Hara, Y. Shinohara, Y. Terada, H. Asahi, and N Doi, Metallurgical Design and Development of High Deformable High Strength Line Pipe Suitable for Strain-based Design, Proceedings of the 19th International Offshore and Polar Engineering Conference, (ISOPE), Osaka, Japan, 21–26, 2009, pp. 73–79.
  • I.J. Beyerlein, M.J. Demkowicz, A. Misra, and B.P. Uberuaga, Defect–interface interactions, Prog. Mater. Sci. 74 (2015), pp. 125–210.
  • I.J. Beyerlein, N.A. Mara, J. Wang, J.S. Carpenter, S.J. Zheng, W.Z. Han, R.F. Zhang, K. Kang, T. Nizolek, and T.M. Pollock, Structure–property–functionality of bimetal interfaces, JOM 64(10) (2012), pp. 1192–1207.
  • J. Cui, W. Zhu, Z. Chen, and L. Chen, Microstructural characteristics and impact fracture behaviors of a novel high-strength low-carbon bainitic steel with different reheated coarse-grained heat-affected zones, Metall. Mater. Trans. A 51(12) (2020), pp. 6258–6268.
  • L. Lan, C. Qiu, D. Zhao, X. Gao, and L. Du, Microstructural characteristics and toughness of the simulated coarse grained heat affected zone of high strength low carbon bainitic steel, Mater. Sci. Eng. A 529 (2011), pp. 192–200.
  • Straffelini, Ductility and formability of metals: A metallurgical engineering perspective, in Mechanisms of Plastic Damage and Ductile Fracture, Straffelini G, ed., Elsevier, 2023.
  • G.A. Pantazopoulos, A short review on fracture mechanisms of mechanical components operated under industrial process conditions: fractographic analysis and selected prevention strategies, Metals 9(2) (2019), pp. 148.
  • A. Das, Stress/strain induced void?, Arch. Comput. Methods Eng. 28(3) (2021), pp. 1795–1852.
  • J.R. Low Jr, Effects of microstructure on fracture toughness of high strength alloys, Eng. Fract. Mech. 1(1) (1968), pp. 47–53.
  • S.H. Goods, and L.M. Brown, Overview no1: the nucleation of cavities by plastic deformation, Acta Metall. 27(1) (1979), pp. 1–15.
  • W.M. Garrison Jr., and N.R. Moody, Ductile fracture, J. Phys. Chem. Solids 48(11) (1987), pp. 1035–1074.
  • G. Le Roy, J.D. Embury, G. Edwards, and M.F. Ashby, A model of ductile fracture based on the nucleation and growth of voids, Acta Metall. 29(8) (1981), pp. 1509–1522.
  • D. Broek, The role of inclusions in ductile fracture and fracture toughness, Eng. Fract. Mech. 5(1) (1973), pp. 55–66.
  • W.F. Hosford, Solid Mechanics, Cambridge University Press, Cambridge (UK), 2013.
  • G. Pantazopoulos, A. Toulfatzis, A. Vazdirvanidis, and A. Rikos, Analysis of the degradation process of structural steel component subjected to prolonged thermal exposure, Metall. Microstruct. Anal. 5(2) (2016), pp. 149–156.
  • A. Das, S.K. Das, S. Sivaprasad, and S. Tarafder, Fracture–property correlation in copper-strengthened high-strength low-alloy steel, Scr. Mater. 59(7) (2008), pp. 681–683.
  • A. Das, S. Sivaprasad, P.C. Chakraborti, and S. Tarafder, Correspondence of fracture surface features with mechanical properties in 304LN stainless steel, Mater. Sci. Eng. A 496(1–2) (2008), pp. 98–105.
  • J. Fineberg, S.P. Gross, M. Marder, and H.L. Swinney, Instability in dynamic fracture, Phys. Rev. Lett. 67(4) (1991), pp. 457–460.
  • S. Ramanathan and D.S. Fisher, Dynamics and instabilities of planar tensile cracks in heterogeneous media, Phys. Rev. Lett. 79(5) (1997), pp. 877–880.
  • D. Bonamy and K. Ravi–Chandar, Bonamy and Ravi–Chandar Reply, Phys. Rev. Lett. 93(9) (2004), pp. 099602.
  • N.T. Goldsmith and G. Clark, Analysis and interpretation of aircraft component defects uing quantitative fractography, in Quantitative Methods in Fractography, Strauss B, Putatunda S, eds., West Conshohocken, PA: ASTM International, 1990, pp. 19428–2959.
  • T. Kobayashi, and D.A. Shockey, Fracture surface topography analysis (FRASTA)–development, accomplishments, and future applications, Eng. Fract. Mech. 77(12) (2010), pp. 2370–2384.
  • W. Macek, D. Sampath, L. Pejkowski, and K. Zak, A brief note on monotonic and fatigue fracture events investigation of thin-walled tubular austenitic steel specimens via fracture surface topography analysis (FRASTA), Eng. Fail. Anal. 134 (2022), pp. 106048.
  • I. Konovalenko, P. Maruschak, and O. Prentkovskis, Automated method for fractographic analysis of shape and size of dimples on fracture surface of high-strength titanium alloys, Metals 8(3) (2018), pp. 161.
  • P. Maruschak, I. Konovalenko, and A. Sorochak, Methods for evaluating fracture patterns of polycrystalline materials based on the parameter analysis of ductile separation dimples: a review, Eng. Fail. Anal. 153 (2023), pp. 107587.
  • O. Hilders, and N. Zambrano, The effect of aging on impact toughness and fracture surface fractal dimension in SAF 2507 super duplex stainless steel, J. Microsc. Ultrastruct. 2(4) (2014), pp. 236–244.
  • A. Das, and S. Tarafder, Geometry of dimples and its correlation with mechanical properties in austenitic stainless steel, Scr. Mater. 59(9) (2008), pp. 1014–1017.
  • A. Das, S.K. Das, and S. Tarafder, Correlation of fractographic features with mechanical properties in systematically varied microstructures of Cu-strengthened high-strength low-alloy steel, Metall. Mater. Trans. A 40(13) (2009), pp. 3138–3146.
  • A. Das, and S. Tarafder, Experimental investigation on martensitic transformation and fracture morphologies of austenitic stainless steel, Int. J. Plast. 25(11) (2009), pp. 2222–2247.
  • A. Das, Contribution of deformation-induced martensite to fracture appearance of austenitic stainless steel, Mater. Sci. Technol. 32(13) (2016), pp. 1366–1373.
  • A. Das, and J.K. Chakravartty, Correlation of fracture features with mechanical properties as a function of strain rate in zirconium alloys, Inter. J. Mater. Res. 107(2) (2016), pp. 184–188.
  • A. Das, Fracture complexity of pressure vessel steels, Philos. Magaz. 97(33) (2017), pp. 3084–3141.
  • A. Das, and J.K. Chakravartty, Fractographic correlations with mechanical properties in ferritic martensitic steels, Surf. Topogr. Metrol. Prop. 5(4) (2017), pp. 045006.
  • A. Das, and C.B. Basak, Fracture mechanisms of spinodal alloys, Philos. Magaz. 98(33) (2018), pp. 3007–3033.
  • A. Das, Effect of stress state on fracture features, Metall. Mater. Trans. A 49(5) (2018), pp. 1425–1432.
  • A. Das, Tessellated dimple geometry of high entropy alloy, Mater. Chem. Phys. 290 (2022), pp. 126434.
  • A. Das, Creep fracture complexions, J. Mater. Civil Eng. 35(5) (2023), pp. 04023057.
  • A. Das, Fracture complexions of a nanocrystalline microstructure, Appl. Phys. A 129(9) (2023), pp. 667.
  • A. Das, Ultrasonic-assisted fracture appearance of titanium, J. Mater. Eng. Perform. (2023), pp. 1–10. https://doi.org/10.1007/s11665-023-08047-5
  • J. Tian, G. Xu, M. Zhou, and H. Hu, Refined bainite microstructure and mechanical properties of a high-strength low-carbon bainitic steel treated by austempering below and above Ms, Steel Res. Int. 89(4) (2018), pp. 1700469.
  • W. Steven, and A.G. Haynes, The temperature of formation of martensite and bainite in low-alloy steels, J. Iron Steel Instit. 183(8) (1956), pp. 349–359.
  • A.E. Nehrenberg, The temperature range of martensite formation, Trans. AIME 167 (1946), pp. 494–498.
  • C. Capdevila, F.G. Caballero, and C. Garcia de Andres, Determination of Ms temperature in steels: a Bayesian neural network model, ISIJ Int. 42(8) (2002), pp. 894–902.
  • I. Tamura, Steel Material Study on the Strength, Vol. 40, Nikkan Kogyo Shinbun Ltd, Tokyo, 1970. (in Japanese).
  • J. Tian, G. Xu, Z. Jiang, H. Hu, and M. Zhou, Effect of Ni addition on bainite transformation and properties in a 2000 MPa grade ultrahigh strength bainitic steel, Metals Mater. Int. 24(6) (2018), pp. 1202–1212.
  • A. Navarro–Lopez, J. Sietsma, and M.J. Santofimia, Effect of prior athermal martensite on the isothermal transformation kinetics below Ms in a low-C high-Si steel, Metall. Mater. Trans. A 47(3) (2016), pp. 1028–1039.
  • M. Zhou, G. Xu, H. Hu, Q. Yuan, and J. Tian, The effect of large stress on bainitic transformation at different transformation temperatures, Steel Res. Int. 88(7) (2017), pp. 1600377.
  • M. Zhu, G. Xu, M. Zhou, Q. Yuan, J. Tian, and H. Hu, Effects of tempering on the microstructure and properties of a high-strength bainite rail steel with good toughness, Metals 8(7) (2018), pp. 484.
  • Z. Wei, H. Hu, M. Liu, J. Tian, and G. Xu, Effect of austempering below and above Ms on the microstructure and wear performance of a low-carbon bainitic steel, Metals 12(1) (2022), pp. 104.
  • T. Kumnorkaew, J. Lian, V. Uthaisangsuk, and W. Bleck, Effect of ausforming on microstructure and hardness characteristics of bainitic steel, J. Mater. Res. Technol. 9(6) (2020), pp. 13365–13374.
  • H.J. Hu, G. Xu, L. Wang, M.X. Zhou, and Z.L. Xue, Effect of ausforming on the stability of retained austenite in a C–Mn–Si bainitic steel, Metals Mater. Int. 21(5) (2015), pp. 929–935.
  • L. Zhao, L. Qian, J. Meng, Q. Zhou, and F. Zhang, Below-Ms austempering to obtain refined bainitic structure and enhanced mechanical properties in low-C high-Si/Al steels, Scr. Mater. 112 (2016), pp. 96–100.
  • S. Samanta, P. Biswas, and S.B. Singh, Analysis of the kinetics of bainite formation below the Ms temperature, Scr. Mater. 136 (2017), pp. 132–135.
  • M. Zhou, G. Xu, L. Wang, and H. Hu, Combined effect of the prior deformation and applied stress on the bainite transformation, Metals Mater. Int. 22(6) (2016), pp. 956–961.
  • C. Garcia–Mateo, and F.G. Caballero, The role of retained austenite on tensile properties of steels with bainitic microstructures, Mater. Trans. 46(8) (2005), pp. 1839–1846.
  • M. Zhou, G. Xu, H. Hu, Q. Yuan, and J. Tian, Comprehensive analysis on the effects of different stress states on the bainitic transformation, Mater. Sci. Eng. A 704 (2017), pp. 427–433.
  • A. Das, Effect of phase interfaces to dimple pattern, Mater. Lett. 337 (2023), pp. 133954.
  • B.B. Mandelbrot, D.E. Passoja, and A.J. Paullay, Fractal character of fracture surfaces of metals, Nature 308(5961) (1984), pp. 721–722.
  • X. Li, J. Tian, Y. Kang, and Z. Wang, Quantitative analysis of fracture surface by roughness and fractal method, Scr. Metall. Mater. 33(5) (1995), pp. 803–809.
  • B. Venkatesh, D.L. Chen, and S.D. Bhole, Three-dimensional fractal analysis of fracture surfaces in a titanium alloy for biomedical applications, Scr. Mater. 59(4) (2008), pp. 391–394.
  • V.Y. Milman, N.A. Stelmashenko, and R. Blumenfeld, Fracture surfaces: a critical review of fractal studies and a novel morphological analysis of scanning tunneling microscopy measurements, Prog. Mater. Sci. 38 (1994), pp. 425–474.
  • O.A. Hilders, and D. Pilo, On the development of a relation between fractal dimension and impact toughness, Mater. Charact. 38(3) (1997), pp. 121–127.
  • L.R. Carney, and Jr. J.J. Mecholsky, Relationship between fracture toughness and fracture surface fractal dimension in AISI 4340 steel, Mater. Sci. Appl. 4 (2013), pp. 258–267.
  • C.D. Calhoun, and N.S. Stoloff, The effects of particles on fracture processes in magnesium alloys, Metall. Trans. 1(4) (1970), pp. 997–1006.
  • V.I. Prosvirin, Role of the supermolecular structure of PMM in the morphology of fracture and features introduced by the type of loading, Polym. Mech. 4(4–6) (1968), pp. 616–625.
  • D.J. Wulpi, Understanding How Components Fail, 2nd ed., ASM International: Materials Park, OH, USA, 2005.
  • S. Abbasi, M. Esmailian, and S. Ahangarani, Investigation of the microstructure, micro-texture and mechanical properties of a HSLA steel, hot-rolled and quenched at different cooling rates, Metallogr. Microstruct. Anal. 7(5) (2018), pp. 596–607.
  • D. Hull, Influence of stress intensity and crack speed on fracture surface topography: mirror to mist transition, J. Mater. Sci. 31(7) (1996), pp. 1829–1841.
  • S.B. Zhou, C.Y. Hu, F. Hu, L. Cheng, O. Isayev, S. Yershov, H.J. Xiang, and K.M. Wu, Insight into the impact of microstructure on crack initiation/propagation behavior in carbide-free bainitic steel during tensile deformation, Mater. Sci. Eng. A 846 (2022), pp. 143175.
  • J. Tian, G. Xu, M. Zhou, H. Hu, and X. Wan, The effects of Cr and Al addition on transformation and properties in low-carbon bainitic steels, Metals 7(2) (2017), pp. 40.
  • J. Tian, G. Xu, Z. Jiang, Q. Yuan, G. Chen, and H. Hu, Effect of austenisation temperature on bainite transformation below martensite starting temperature, Mater. Sci. Technol. 35(13) (2019), pp. 1539–1550.
  • J. Tian, G. Xu, Z. Jiang, H. Hu, Q. Yuan, and X. Wan, In-situ observation of martensitic transformation in a Fe–C–Mn–Si bainitic steel during austempering, Metals Mater. Int. 26(7) (2020), pp. 961–972.
  • G. Chen, G. Xu, H. Hu, J. Tian, Q. Yuan, and J. Wang, Effect of two-step ausforming on bainite transformation and retained austenite in a medium-carbon bainitic steel, Mater. Res. Exp. 7(1) (2020), pp. 016519.
  • D. Hull, Fractography: Observing, Measuring and Interpreting Fracture Surface Topography, Cambridge University Press, Cambridge, 1999.
  • O. Hajizad, A. Kumar, R.H. Petrov, J. Sietsma, R.P.B.J. Dollevoet, and Z. Li, Strain partitioning and damage initiation in a continuously cooled carbide free bainitic steel, Comput. Mater. Sci. 202 (2022), pp. 110965.
  • Y. Wang, Q. Wang, L. Liu, and W. Xu, Fracture mode of martensite–austenite constituents containing multiphase steel controlled by microstructural and micromechanical aspects, Mech. Adv. Mater. Struct.22(7) (2015), pp. 591–596.
  • X. Sun, Z. Li, Q. Yong, Z. Yang, H. Dong, and Y. Weng, Third generation high strength low alloy steels with improved toughness, Sci. China Technol. Sci. 55(7) (2012), pp. 1797–1805.
  • N. Saeidi, F. Ashrafizadeh, B. Niroumand, M.R. Forouzan, and F. Barlat, Influence of bainite morphology on ductile fracture behavior in a 0.4C–CrMoNi steel, Steel Res. Int. 86(5) (2015), pp. 528–535.
  • D. Bhattacharjee, and J.F. Knott, Effect of mixed mode I and II loading on the fracture surface of polymethyl methacrylate (PMMA), Int. J. Fract. 72(4) (1995), pp. 359–381.
  • V. Kerlins, and A. Phillips, Modes of fracture, ASM Handbook 12 (1987), pp. 12–71.
  • F.A. McClintock, and A.S. Argon, Mechanical Behavior of Materials, Addison-Wesley, 1966. p. 524.
  • M. Yang, Y.J. Chao, X. Li, D. Immel, and J. Tan, Splitting in dual-phase 590 high strength steel plates: part II. Quantitative analysis and its effect on Charpy impact energy, Mater. Sci. Eng. A 497(1–2) (2008), pp. 462–470.
  • X.X. Dong, and Y.F. Shen, Improving mechanical properties and corrosion resistance of 0.5 wt.%C TRIP steel by adjusting retained austenite stability and microstructural constituents, Materi. Sci. Eng. A 852 (2022), pp. 143737.
  • A. Krolicka, G. Lesiuk, R. Kuziak, K. Radwanski, and A. Janik, The role of microstructure morphology on fracture mechanisms of continuously cooled bainitic steel designed for rails application, Metall. Mater. Trans. A 54(2) (2023), pp. 487–504.
  • B.C. De Cooman, Structure–properties relationship in TRIP steels containing carbide-free bainite, Curr. Opin. Solid State Mater. Sci. 8(3–4) (2004), pp. 285–303.
  • M. Pozuelo, J.E. Wittig, J.A. Jimenez, and G. Frommeyer, Enhanced mechanical properties of a novel high-nitrogen Cr–Mn–Ni–Si austenitic stainless steel via TWIP/TRIP effects, Metall. Mater. Trans. A40(8) (2009), pp. 1826–1834.
  • J. Tian, W. Wang, G. Xu, X. Wang, M. Zhou, and H. Zurob, Microstructure and properties of a low carbon bainitic steel produced by conventional and inverted two-step austempering processes, Metals Mater. Inter. 29(5) (2023), pp. 1298–1310.
  • F.G. Caballero, and C. Garcia–Mateo, The processing of nanocrystalline steels by solid reaction. in Nanostructured Metals and Alloys: Processing, Microstructure, Mechanical Properties and Applications, Whang Sung H, ed., Woodhead Publishing, 2011, pp. 85–117.
  • X.X. Dong, Y.F. Shen, N. Jia, and Y.T. Zhu, Improving mechanical properties and retained-austenite stability of a medium carbon Q&P steel by adjusting phase ratio, Mater. Sci. Eng. A 833 (2022), pp. 142580.
  • X.X. Dong, Y.F. Shen, T.W. Yin, R.D.K. Misra, and G. Lin, Strengthening a medium-carbon steel to 2800 MPa by tailoring nanosized precipitates and the phase ratio, Mater. Sci. Eng. A 759 (2019), pp. 725–735.
  • X.X. Dong, S. Liu, Y.F. Shen, and N. Jia, Isothermal holding treatment of a transformation-induced plasticity steel for obtaining ultrahigh strength and high plasticity, J. Mater. Eng. Perform. 30(6) (2021), pp. 4504–4517.
  • A.J. Clarke, J.G. Speer, D.K. Matlock, F.C. Rizzo, D.V. Edmonds, and M.J. Santofimia, Influence of carbon partitioning kinetics on final austenite fraction during quenching and partitioning, Scr. Mater. 61(2) (2009), pp. 149–152.
  • M.J. Santofimia, L. Zhao, and J. Sietsma, Microstructural evolution of a low-carbon steel during application of quenching and partitioning heat treatments after partial austenitization, Metall. Mater. Trans. A 40(1) (2009), pp. 46–57.
  • Z.H. Cai, H. Ding, R.D.K. Misra, and Z.Y. Ying, Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content, Acta Mater. 84 (2015), pp. 229–236.
  • J. Speer, D.K. Matlock, B.C. De Cooman, and J.G. Schroth, Carbon partitioning into austenite after martensite transformation, Acta Mater. 51(9) (2003), pp. 2611–2622.
  • D.P. Koistinen, A general equation prescribing extend of austenite–martensite transformation in pure Fe–C alloys and plain carbon steels, Acta Metall. Mater. 7(1) (1959), pp. 59–60.
  • A. Arlazarov, M. Ollat, J.P. Masse, and M. Bouzat, Influence of partitioning on mechanical behavior of Q&P steels, Mater. Sci. Eng. A 661 (2016), pp. 79–86.
  • H.F. Lan, L.X. Du, and R.D.K. Misra, Effect of microstructural constituents on strength–toughness combination in a low carbon bainitic steel, Mater. Sci. Eng. A 611 (2014), pp. 194–200.
  • Y.M. Kim, S.Y. Shin, H. Lee, B. Hwang, S. Lee, and N.J. Kim, Effects of molybdenum and vanadium addition on tensile and Charpy impact properties of API X70 linepipe steels, Metall. Mater. Trans. A38(8) (2007), pp. 1731–1742.
  • M.C. Zhao, K. Yang, and Y. Shan, The effects of thermo-mechanical control process on microstructures and mechanical properties of a commercial pipeline steel, Mater. Sci. Eng. A 335(1–2) (2002), pp. 14–20.
  • C.Q. Chen, and J.F. Knott, Effects of dispersoid particles on toughness of high-strength aluminium alloys, Metal Sci. 15(8) (1981), pp. 357–364.
  • Z. Shan, and Y. Leng, Fracture and fatigue behavior of sintered steel at elevated temperatures: part I. Fracture toughness, Metall. Mater. Trans. A 30 (1999), pp. 2885–2893.
  • A. Skowronek, E. Cordova–Tapia, P. Tobajas-Balsera, C. Garcia–Mateo, J.A. Jiménez, R. Petrov, and A. Grajcar, Bainite plate thickness reduction and microstructure tailoring by double austempering of Al-rich 3Mn steel, Mater. Sci. Eng. A 853 (2022), pp. 143743.
  • I.A. Yakubtsov, and G.R. Purdy, Analyses of transformation kinetics of carbide-free bainite above and below the athermal martensite-start temperature, Metall. Mater. Trans. A 43(2) (2012), pp. 437–446.
  • S. Samanta, P. Biswas, S. Giri, S.B. Singh, and S. Kundu, Formation of bainite below the ms temperature: kinetics and crystallography, Acta Mater. 105 (2016), pp. 390–403.
  • C. Garcia–Mateo, F.G. Cabellero, and H.K.D.H. Bhadeshia, Development of hard bainite, ISIJ International 43(8) (2003), pp. 1238–1243.
  • M. Morawiec, A. Skowronek, A. Kozłowska, C. Garcia–Mateo, and A. Grajcar, Effect of prior martensite formation on the bainite transformation kinetics in high-strength 3% Mn multiphase steel, J. Therm. Anal. Calorim. 148(4) (2023), pp. 1365–1371.
  • V Ruiz–Jimenez, J.A. Jimenez, J.F. Caballero, and C. Garcia–Mateo, Bainitic ferrite plate thickness evolution in two nanostructured steels, Materials 14(15) (2021), pp. 4347.
  • A. Eres–Castellanos, J. Hidalgo, M. Zorgani, M. Jahazi, I. TodaCaraballo, F.G. Caballero, and C. Garcia–Mateo, Assessing the scale contributing factors of three carbide-free bainitic steels: a complementary theoretical and experimental approach, Mater. Des. 197 (2021), pp. 109217.
  • S. He, B. He, K. Zhu, and M.X. Huang, Evolution of dislocation density in bainitic steel: modeling and experiments, Acta Mater. 149 (2018), pp. 46–56.
  • H.J. Hu, G. Xu, L. Wang, Z.L. Xue, Y.L. Zhang, and G.H. Liu, The effects of Nb and Mo addition on transformation and properties in low carbon bainitic steels, Mater. Des. 84 (2015), pp. 95–99.
  • F. Hu, and K.M. Wu, Nanostructured high-carbon dual-phase steels, Scr. Mater. 65(4) (2011), pp. 351–354.
  • F.G. Caballero, and H.K.D.H. Bhadeshia, Very strong bainite, Curr. Opin. Solid State Mater. Sci.8(3–4) (2004), pp. 251–257.
  • X.X. Zhang, G. Xu, X. Wang, D. Embury, O. Bouaziz, G.R. Purdy, and H.S. Zurob, Mechanical behavior of carbide-free medium carbon, Metall. Mater. Trans. A 45(3) (2014), pp. 1352–1361.
  • S. Singh, and H. Bhadeshia, Estimation of bainite plate-thickness in low-alloy steels, Mater. Sci. Eng. A 245(1) (1998), pp. 72–79.
  • A. Lambert–Perlade, A.F. Gourgues, J. Besson, T. Sturel, and A. Pineau, Mechanisms and modeling of cleavage fracture in simulated heat-affected zone microstructures of a high-strength low alloy steel, Metall. Mater. Trans. A 35(13) (2004), pp. 1039–1053.
  • G.E. Dieter, Mechanical Metallurgy, 3rd ed., McGraw Hill, New York, NY, 1986.
  • H.L. Kim, and S.H. Park, Loading direction dependence of yield-point phenomenon and Bauschinger effect in API X70 steel sheet, Metals Mater. Int. 26(1) (2020), pp. 14–24.
  • B. Jiang, X. Hu, G. He, H. Peng, H. Wang, and Y. Liu, Microstructural characterization and softening mechanism of ultra-low carbon steel and the control strategy in compact strip production process, Metals Mater. Int. 26(9) (2020), pp. 1295–1305.
  • S.I. Lee, J. Lee, and B. Hwang, Microstructure-based prediction of yield ratio and uniform elongation in high-strength bainitic steels using multiple linear regression analysis, Mater. Sci. Eng. A 758 (2019), pp. 56–59.
  • C. Garcia–Mateo, M. Peet, F.G. Caballero, and H.K.D.H. Bhadeshia, Tempering of hard mixture of bainitic ferrite and austenite, Mater. Sci. Technol. 20(7) (2004), pp. 814–818.
  • W. Jiqin, Chapter 5 - Material interface of pantograph and contact line, in High-Speed Railway, Pantograph and Contact Line System, Jiqin W, ed., Academic Press, 2018, pp. 165–191. https://doi.org/10.1016/B978-0-12-812886-2.00005-7.
  • K. Wang, Z. Tan, G. Gao, X. Gui, R.D. Misra, and B. Bai, Ultrahigh strength-toughness combination in Bainitic rail steel: the determining role of austenite stability during tempering, Mater. Sci. Eng. A662 (2016), pp. 162–168.
  • K.K. Wang, Z.L. Tan, G.H. Gao, X.L. Gui, and B.Z. Bai, Effect of retained austenite stability on mechanical properties of bainitic rail steel, Adv. Mat. Res. 1004 (2014), pp. 198–202.
  • A. Smekal, Dynamik des sproden Zugbruches von zylindrischen Glasstaben, Acta Phys. Austr. 7 (1953), pp. 110–122.
  • Z. Yao, J. Tian, X. Chen, Z. Wei, J. Wang, and G. Xu, Investigation on microstructure and properties of low-carbon wear-resistant steels with addition of Cr and Ni, Steel Res. Int. 91(7) (2020), pp. 1900677.
  • B. Hwang, Y.M. Kim, S. Lee, N.J. Kim, and J.Y. Yoo, Correlation of rolling condition, microstructure, and low-temperature toughness of X70 pipeline steels, Metall. Mater. Trans. A 36(7) (2005), pp. 1793–1805.
  • H.F. Lan, L.X. Du, Q. Li, C.L. Qiu, J.P. Li, and R.D.K. Misra, Improvement of strength–toughness combination in austempered low carbon bainitic steel: the key role of refining prior austenite grain size, J. Alloys Compd. 710 (2017), pp. 702–710.
  • H.F. Xu, J. Zhao, W.Q. Cao, J. Shi, C.Y. Wang, J. Li, and H. Dong, Tempering effects on the stability of retained austenite and mechanical properties in a medium manganese steel, ISIJ Int. 52(5) (2012), pp. 868–873.
  • A. Das, Fractal–property correlation of hierarchical 3D nanolayered α/β–Zr networks, Scr. Mater. 218 (2022), pp. 114833.
  • J. Chiang, B. Lawrence, J.D. Boyd, and A.K. Pilkey, Effect of microstructure on retained austenite stability and work hardening of TRIP steels, Mater. Sci. Eng. A 528(13–14) (2011), pp. 4516–4521.
  • J. Li, R. Song, X. Li, N. Zhou, and R. Song, Microstructural evolution and tensile properties of 70 GPa.% grade strong and ductile hot–rolled 6Mn steel treated by intercritical annealing, Mater. Sci. Eng. A 745 (2019), pp. 212–220.
  • Y.F. Shen, L.N. Qiu, X. Sun, L. Zuo, P.K. Liaw, and D. Raabe, Effects of retained austenite volume fraction, morphology, and carbon content on strength and ductility of nanostructured TRIP-assisted steels, Mater. Sci. Eng. A 636 (2015), pp. 551–564.
  • X.C. Xiong, B. Chen, M.X. Huang, J.F. Wang, and L. Wang, The effect of morphology on the stability of retained austenite in a quenched and partitioned steel, Scr. Mater. 68(5) (2013), pp. 321–324.
  • N. Nakada, Y. Ishibashi, T. Tsuchiyama, and S. Takaki, Self-stabilization of untransformed austenite by hydrostatic pressure via martensitic transformation, Acta Mater. 110 (2016), pp. 95–102.
  • W. Ding, D. Tang, H.T. Jiang, and W. Huang, Influence of isothermal bainite transformation time on microstructure and mechanical properties of hot-dip galvanized TRIP steel, J. Mater. Eng. Perform. 20(6) (2011), pp. 997–1002.
  • K. Hase, C. Garcia–Mateo, and H.K.D.H. Bhadeshia, Bimodal size-distribution of bainite plates, Mater. Sci. Eng. A 438-440 (2006), pp. 145–148.
  • M.F. Hafiz, and T. Kobayashi, Fracture toughness of eutectic Al–Si casting alloy with different microstructural features, J. Mater. Sci. 31(23) (1996), pp. 6195–6200.
  • O.A. Hilders, M. Ramos, N.D. Pena, and L. Saenz, Fractal geometry of fracture surfaces of a duplex stainless steel, J. Mater. Sci. 41(17) (2006), pp. 5739–5742.
  • Z.Q. Mu, C.W. Lung, Studies on the fractal dimension and fracture toughness of steel, J. Phys. D: Appl. Phys. 21 (1988), pp. 848–850.
  • J.C. Tsiung, and Y.T. Chou, Fractal characterization of the fracture surface of a high strength low-alloy steel, J. Mater. Sci. 33(11) (1998), pp. 2949–2953.
  • O.A. Hilders, L. Saenz, M. Ramos, and N.D. Pena, Effect of 475∘C embrittlement on fractal behavior and tensile properties of a duplex stainless steel, J. Mater. Eng. Perform. 8(1) (1999), pp. 87–90.
  • O.A. Hilders, L. Saenz, N. Pena, M. Ramos, A. Quintero, R. Caballero, and L. Berrío, Fractal characterization of the fractured surface of a duplex stainless steel and its relation with strength and ductility. in Microscopy and microanalysis, Bailey GW, McKernan S, Price RL, Walck SD, Charest PM, Gauvin R, eds., Philadelphia, Springer, 2000, pp. 766–767.
  • R. H. Dauskardt, F. Haubensak, and R. O. Ritchie, On the interpretation of the fractal character of fracture surfaces, Acta Metall. Et Mater. 38 (1990), pp. 142–159.
  • M. Tanaka, Y. Kimura, J. Taguchi, and R. Kato, Fracture surface topography and fracture mechanism in austenitic SUS316 steel plates fatigued by repeated bending, J. Mater. Sci. 41(10) (2006), pp. 2885–2893.
  • N. Almqvist, Fractal analysis of scanning probe microscopy images, Surf. Sci. 355(1–3) (1996), pp. 221–228.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.