365
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Unifying the size effect observed in micropillar compression experiments

& ORCID Icon
Pages 482-498 | Received 04 Jul 2023, Accepted 18 Jan 2024, Published online: 07 Feb 2024

References

  • J.W. Matthews and J.L. Crawford, Accommodation of misfit between single-crystal films of nickel and copper. Thin Solid Films 5 (1970), pp. 187–198. doi:10.1016/0040-6090(70)90076-3.
  • D.J. Dunstan, S. Young, and R.H. Dixon, Geometrical theory of critical thickness and relaxation in strained-layer growth. J. Appl. Phys 70 (1991), pp. 3038–3045. doi:10.1063/1.349335.
  • N.A. Fleck, G.M. Muller, M.F. Ashby, and J.W. Hutchinson, Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42 (1994), pp. 475–487. doi:10.1016/0956-7151(94)90502-9.
  • J.S. Stölken and A.G. Evans, A microbend test method for measuring the plasticity length scale. Acta Mater. 46 (1998), pp. 5109–5115. doi:10.1016/S1359-6454(98)00153-0.
  • W.D. Nix and H. Gao, Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46 (1998), pp. 411–425. doi:10.1016/S0022-5096(97)00086-0.
  • M.F. Ashby, The deformation of plastically non-homogeneous materials. Philosophical Mag. A 21 (1970), pp. 399–424.
  • D.M.D. Uchic, J.N. Florando, and W.D. Nix, Sample dimensions influence strength and crystal plasticity. Science 305 (2004), pp. 986–989. doi:10.1126/science.1098993.
  • J.R. Greer, W.C. Oliver, and W.D. Nix, Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 53 (2005), pp. 1821–1830. doi:10.1016/j.actamat.2004.12.031.
  • C.A. Volkert and E.T. Lilleodden, Size effects in the deformation of sub-micron Au columns. Philos. Mag 86 (2006), pp. 5567–5579. doi:10.1080/14786430600567739.
  • D. Kiener, C. Motz, T. Schoeberl, M. Jenko, and G. Dehm, Determination of mechanical properties of copper at the micron scale. Adv. Engin. Mater 8 (2006), pp. 1119–1125. doi:10.1002/adem.200600129.
  • R. Dou and B. Derby, The strength of Au nanowire forests. Scripta Mater 59 (2008), pp. 151–154. doi:10.1016/j.scriptamat.2008.02.046.
  • R. Dou and B. Derby, A universal scaling law for the strength of metal micropillars and nanowires. Scripta Mater 61 (2009), pp. 524–527. doi:10.1016/j.scriptamat.2009.05.012.
  • J. Greer and J.T.M. de Hosson, Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mater. Sci 56 (2011), pp. 654–724. doi:10.1016/j.pmatsci.2011.01.005.
  • E. Arzt, Size effects in materials due to microstructural and dimensional constraints: a comparative review. Acta Mater. 46 (1998), pp. 5611–5626. doi:10.1016/S1359-6454(98)00231-6.
  • J.R. Greer and W.D. Nix, Nanoscale gold pillars strengthened through dislocation starvation. Phys. Rev. B 73 (2006), pp. 245410). doi:10.1103/PhysRevB.73.245410.
  • Z.W. Shan, R.K. Mishra, S.A. Syed Asif, O.L. Warren, and A.M. Minor, Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nature Mater. 7 (2008), pp. 115–119. doi:10.1038/nmat2085.
  • D. Kiener and A.M. Minor, Source truncation and exhaustion: insights from quantitative in situ TEM tensile testing. Nano. Lett 11 (2011), pp. 3815–3820. doi:10.1021/nl201890s.
  • T.A. Parthasarathy, S.I. Rao, D.M. Dimiduk, M.D. Uchic, and D.R. Trinkle, Contribution to size effect of yield strength from the stochastics of dislocation source lengths in finite samples. Scripta Mater 56 (2007), pp. 313–316. doi:10.1016/j.scriptamat.2006.09.016.
  • S. Brinckmann, J.Y. Kim, and J.R. Greer, Fundamental differences in mechanical behavior between two types of crystals at the nanoscale. Phys. Rev. Lett 100 (2008), pp. 155502). doi:10.1103/PhysRevLett.100.155502.
  • A.S. Schneider, B.G. Clark, C.P. Frick, P.A. Gruberd, and E. Arzt, Effect of orientation and loading rate on compression behavior of small-scale Mo pillars. Mater. Sc. Eng. A 505 (2009), pp. 241–246. doi:10.1016/j.msea.2009.01.011.
  • A.S. Schneider, D. Kaufmann, B.G. Clark, C.P. Frick, P.A. Gruber, R. Mönig, O. Kraft, and E. Arzt, Correlation between Critical Temperature and Strength of Small-Scale bcc Pillars. Phys. Rev. Lett. 103 (2009), pp. 105501). doi:10.1103/PhysRevLett.103.105501.
  • S. Korte and W.J. Clegg, Discussion of the dependence of the effect of size on the yield stress in hard materials studied by microcompression of MgO. Phil. Mag. 91 (2011), pp. 1150–1162. doi:10.1080/14786435.2010.505179.
  • S.W. Lee and W.D. Nix, Size dependence of the yield strength of fcc and bcc metallic micropillars with diameters of a few micrometers. Phil. Mag. 92 (2012), pp. 1238–1260. doi:10.1080/14786435.2011.643250.
  • O.T. Abad, J.M. Wheeler, J. Michler, A.S. Schneider, and E. Arzt, Temperature-dependent size effects on the strength of Ta and W micropillars. Acta Mater. 103 (2016), pp. 483–494. doi:10.1016/j.actamat.2015.10.016.
  • H. Yilmaz, C.J. Williams, J. Risan, and B. Derby, The size dependent strength of Fe, Nb and V micropillars at room and low temperature. Materialia 7 (2019), pp. 100424). doi:10.1016/j.mtla.2019.100424.
  • R. Soler, J.M. Wheeler, H.J. Chang, J. Segurado, J. Michler, J. LLorca, and J.M. Molina-Aldareguia, Understanding size effects on the strength of single crystals through high-temperature micropillar compression. Acta Mater. 81 (2014), pp. 50–57. doi:10.1016/j.actamat.2014.08.007.
  • M. Chen, J. Wehrs, A.S. Sologubenko, J. Rabier, J. Michler, and J.M. Wheeler, Size-dependent plasticity and activation parameters of lithographically-produced silicon micropillars. Mater. Design 189 (2020), pp. 108506). doi:10.1016/j.matdes.2020.108506.
  • D.J. Dunstan and A.J. Bushby, The scaling exponent in the size effect of small scale plastic deformation. Inter. J. Plasticity 40 (2013), pp. 152–162. doi:10.1016/j.ijplas.2012.08.002.
  • B.R.S. Rogne and C. Thaulow, Effect of crystal orientation on the strengthening of iron micro pillars. Mater. Sci. Eng. A 621 (2015), pp. 133–142. doi:10.1016/j.msea.2014.10.067.
  • R. Huang, Q.-J. Li, Z.-J. Wang, L. Huang, J. Li, E. Ma, and Z.-W. Shan, Flow stress in submicron BCC iron single crystals: sample-size-dependent strain-rate sensitivity and rate-dependent size strengthening. Mater. Res. Lett 3 (2015), pp. 121–127. doi:10.1080/21663831.2014.999953.
  • H. Yilmaz, C.J. Williams, and B. Derby, Size effects on strength and plasticity of ferrite and austenite pillars in a duplex stainless steel. Mater. Sci. Eng. A 793 (2020), pp. 139883). doi:10.1016/j.msea.2020.139883.
  • H. Yilmaz. Mechanical properties of body-centred cubic nanopillars. Ph.D. Thesis, University of Manchester, Manchester, UK (2018).
  • A.S. Schneider, C. Frick, E. Arzt, W. Clegg, and S. Korte, Influence of test temperature on the size effect in molybdenum small-scale compression pillars. Phil. Mag. Lett 93 (2013), pp. 331–338. doi:10.1080/09500839.2013.777815.
  • J.-Y. Kim, D. Jang, and J.R. Greer, Tensile and compressive behavior of tungsten, molybdenum, tantalum and niobium at the nanoscale. Acta Mater. 58 (2010), pp. 2355–2363. doi:10.1016/j.actamat.2009.12.022.
  • S.M. Han, T. Bozorg-Grayeli, J.R. Groves, and W.D. Nix, Size effects on strength and plasticity of vanadium nanopillars. Scr. Mater. 63 (2010), pp. 1153–1156. doi:10.1016/j.scriptamat.2010.08.011.
  • A.S. Schneider, C. Frick, B. Clark, P. Gruber, and E. Arzt, Influence of orientation on the size effect in bcc pillars with different critical temperatures. Mater. Sci. Eng. A 528 (2011), pp. 1540–1547. doi:10.1016/j.msea.2010.10.073.
  • S.-W. Lee, Y. Cheng, I. Ryu, and J. Greer, Cold-temperature deformation of nano-sized tungsten and niobium as revealed by in-situ nano-mechanical experiments. China Technol. Sci 57 (2014), pp. 652–662. doi:10.1007/s11431-014-5502-8.
  • D. Kaufmann, R. Mönig, C. Volkert, and O. Kraft, Size dependent mechanical behaviour of tantalum. J. Plasticity 27 (2011), pp. 470–478. doi:10.1016/j.ijplas.2010.08.008.
  • Y. Zou and R. Spolenak, Size-dependent plasticity in micron- and submicron-sized ionic crystals. Phil. Mag. Lett 93 (2013), pp. 431–438. doi:10.1080/09500839.2013.797616.
  • E.M. Nadgorny, D.M. Dimiduk, and M.D. Uchic, Size effects in LiF micron-scale single crystals of low dislocation density. J. Mater. Res 23 (2008), pp. 2829–2835. doi:10.1557/JMR.2008.0349.
  • R. Soler, J.M. Molina-Aldareguia, J. Segurado, J. Llorca, R.I. Merino, and V.M. Orera, Micropillar compression of LiF [111] single crystals: Effect of size, ion irradiation and misorientation. Inter. J. Plasticity 36 (2012), pp. 50–63. doi:10.1016/j.ijplas.2012.03.005.
  • F. Östlund, P.R. Howie, R. Ghisleni, S. Korte, K. Leifer, W.J. Clegg, and J. Michler, Ductile-brittle transition in micropillar compression of GaAs at room temperature. Philos. Mag 91 (2011), pp. 1190–1199. doi:10.1080/14786435.2010.509286.
  • K. Kishida, Y. Shinkai, and H. Inui, Room temperature deformation of 6H–SiC single crystals investigated by micropillar compression. Acta Mater. 187 (2020), pp. 19–28. doi:10.1016/j.actamat.2020.01.027.
  • R. Fritz, V. Maier-Kiener, D. Lutz, and D. Kiener, Interplay between sample size and grain size: Single crystalline vs. ultrafine-grained chromium micropillars. Mater. Sci. Eng. A 674 (2016), pp. 626–633. doi:10.1016/j.msea.2016.08.015.
  • D. Kiener, R. Fritz, M. Alfreider, A. Leitner, R. Pippan, and V. Maier-Kiener, Rate limiting deformation mechanisms of bcc metals in confined volumes. Acta Mater. 166 (2019), pp. 687–701. doi:10.1016/j.actamat.2019.01.020.