85
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Effect and mechanism of similar elements on glass forming abilities of Hf-based bulk metallic glasses

ORCID Icon, , , , , , , , & show all
Pages 466-481 | Received 11 Dec 2023, Accepted 29 Feb 2024, Published online: 18 Mar 2024

References

  • A. Inoue, High strength bulk amorphous alloys with low critical cooling rates. Mater.Trans.JIM 36 (1995), pp. 866–875.
  • L. Liu, T. Zhang, Z. Liu, C. Yu, X. Dong, L. He, K. Gao, X. Zhu, W. Li, C. Wang, P. Li, L. Zhang, and L. Li, Near-net forming complex shaped Zr-based bulk metallic glasses by high pressure die casting. Materials. (Basel) 11 (2018), p. 2338.
  • W.L. Johnson, Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24 (1999), pp. 42–56.
  • J.F. Löffler, Bulk metallic glasses. Intermetallics 11 (2003), pp. 529–540.
  • A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48 (2000), pp. 279–306.
  • W.H. Wang, C. Dong, and C.H. Shek, Bulk metallic glasses. Mater. Sci. Eng. R 44 (2004), pp. 45–89.
  • J.J. Kruzic, Bulk metallic glasses as structural materials: A review. Adv. Eng. Mater. 18 (2016), pp. 1308–1331.
  • A. Peker, Formation and characterization of bulk metallic glass, Ph.D. diss., California Institute of Technology, 1994.
  • X.H. Lin, Bulk glass formation and crystallization of Zr-Ti based alloys, Ph.D. diss., California Institute of Technology, 1997.
  • Q.K. Jiang, X.P. Nie, Y.G. Li, Y. Jin, Z.Y. Chang, X.M. Huang, and J.Z. Jiang, Ni-free Zr-based bulk metallic glasses with critical diameter above 20 mm. J. Alloys Compd. 443 (2007), pp. 191–194.
  • N. Hua, S. Pang, Y. Li, J. Wang, R. Li, K. Georgarakis, A.R. Yavari, G. Vaughan, and T. Zhang, Ni- and Cu-free Zr–Al–Co–Ag bulk metallic glasses with superior glass-forming ability. J. Mater. Res. 26 (2011), pp. 539–546.
  • J. Shen, Q. Chen, J. Sun, H. Fan, and G. Wang, Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy. Appl. Phys. Lett. 86 (2005), p. 151907.
  • A. Inoue, F.L. Kong, Q.K. Man, B.L. Shen, R.W. Li, and F. Al-Marzouki, Development and applications of Fe- and Co-based bulk glassy alloys and their prospects. J. Alloys Compd. 615 (2014), pp. S2–S8.
  • H. Men, S.J. Pang, and T. Zhang, Effect of Er doping on glass-forming ability of Co50Cr15Mo14C15B6 alloy. J. Mater. Res. 21 (2006), pp. 958–961.
  • N. Nishiyama and A. Inoue, Glass-forming ability of Pd42.5Cu30Ni7.5P20 alloy with a low critical cooling rate of 0.067 K/s. Appl. Phys. Lett. 80 (2002), pp. 568–570.
  • J. Schroers and W.L. Johnson, Highly processable bulk metallic glass-forming alloys in the Pt–Co–Ni–Cu–P system. Appl. Phys. Lett. 84 (2004), pp. 3666–3668.
  • C.-L. Dai, H. Guo, Y. Shen, Y. Li, E. Ma, and J. Xu, A new centimeter–diameter Cu-based bulk metallic glass. Scrip. Mat. 54 (2006), pp. 1403–1408.
  • W. Zhang, Q. Zhang, C. Qin, and A. Inoue, Formation and properties of new Cu-based bulk glassy alloys with critical diameters up to 1.5 cm. J. Mater. Res. 24 (2009), pp. 2935–2940.
  • J.S. Saini, C. Palian, F. Lei, A. Dyall, N. AuYeung, R. McQuade, S.K. Gupta, D.P. Cann, and D.H. Xu, Rare-earth and precious-metal free Cu-based metallic glasses with superior glass-forming ability and processability. Appl. Phys. Lett. 116 (2020), p. 011901.
  • Q.K. Jiang, G.Q. Zhang, L. Yang, X.D. Wang, K. Saksl, H. Franz, R. Wunderlich, H. Fecht, and J.Z. Jiang, La-based bulk metallic glasses with critical diameter up to 30 mm. Acta Mater. 55 (2007), pp. 4409–4418.
  • Q.K. Jiang, G.Q. Zhang, L.Y. Chen, Q.S. Zeng, and J.Z. Jiang, Centimeter-sized (La0.5Ce0.5)-based bulk metallic glasses. J. Alloys Compd. 424 (2006), pp. 179–182.
  • H. Ma, L.L. Shi, J. Xu, Y. Li, and E. Ma, Discovering inch-diameter metallic glasses in three-dimensional composition space. Appl. Phys. Lett. 87 (2005), p. 181915.
  • E.S. Park, W.T. Kim, and D.H. Kim, Bulk glass formation in Mg-Cu-Ag-Y-Gd alloy. Mater. Trans. 45 (2004), pp. 2474–2477.
  • L. Zhang, R. Li, J. Wang, H. Zhang, N. Hua, and T. Zhang, The influence of Ag substitution for Cu on glass-forming ability and thermal properties of Mg-based bulk metallic glasses. J. Non-Cryst. Solids. 358 (2012), pp. 1425–1429.
  • K. Gao, X.G. Zhu, L. Chen, W.H. Li, X. Xu, B.T. Pan, W.R. Li, W.H. Zhou, L. Li, W. Huang, and Y. Li, Recent development in the application of bulk metallic glasses. J. Mater. Sci. Technol. 131 (2022), pp. 115–121.
  • C. Du, Z. Du, K. Wang, W. Dai, G. Gao, Z. Zhu, L. Xu, and X. Chen, Effect of tungsten fiber diameter on the dynamic compression properties of tungsten fiber/Zr-based bulk metallic glasses matrix composite. Int. J. Impact Eng. 164 (2022), pp. 104185.
  • J. Yu, H. Wang, Y. Wu, G. Xie, L. Shao, Y. Li, K. Shan, S. Jiang, X. Liu, J. Huang, and Z. Lu, Combustion behavior and mechanism of Cu46Zr46Al8 bulk metallic glass in oxygen-enriched environments. Corros. Sci. 204 (2022), p. 110415.
  • R.B. Dandliker, Bulk metallic glass matrix composites: Processing, microstructure, and application as a kinetic energy penetrator, Ph.D. diss., California Institute of Technology, 1998.
  • S. Nagireddi, B. Majumdar, S. Bonta, and A.B. Diraviam, High-Density bulk metallic glasses and their composites for kinetic energy penetrator applications: Process, structure and properties. Trans. Indian Inst. Met. 74 (2021), pp. 2117–2134.
  • L. Ma, L. Wang, T. Zhang, and A. Inoue, Fabrication of bulk glassy Hf50Cu30Ni10Al10 alloy by copper mold casting. Mater. Trans. 43 (2002), pp. 2357–2359.
  • X. Gu, L.Q. Xing, and T.C. Hufnagel, Glass-forming ability and crystallization of bulk metallic glass (HfxZr1−x)52.5Cu17.9Ni14.6Al10Ti5. J. Non-Cryst. Solids 311 (2002), pp. 77–82.
  • D.V. Louzguine, M.S. Ko, and A. Inoue, Nanoquasicrystalline phase produced by devitrification of Hf–Pd–Ni–Al metallic glass. Appl. Phys. Lett. 76 (2000), pp. 3424–3426.
  • L. Zhang, E. Ma, and J. Xu, Hf-based bulk metallic glasses with critical diameter on centimeter scale. Intermetallics 16 (2008), pp. 584–586.
  • A. Peker and W.L. Johnson, A highly processable metallic glass Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl. Phys. Lett. 63 (1993), pp. 2342–2344.
  • Q.K. Jiang, X.D. Wang, X.P. Nie, G.Q. Zhang, H. Ma, H.J. Fecht, J. Bendnarcik, H. Franz, Y.G. Liu, Q.P. Cao, and J.Z. Jiang, Zr-(Cu,Ag)-Al bulk metallic glasses. Acta Mater. 56 (2008), pp. 1785–1796.
  • S.T. Deng, H.F. Zhang, A.M. Wang, H. Li, B.Z. Ding, and Z.Q. Hu, Improving glass forming ability of Zr50.5Cu36.5Ni4Al9 alloy by suppressing CuZr phase precipitation. J. Alloys Compd. 460 (2008), pp. 182–185.
  • M.H. Cohen and D. Turnbull, Composition requirements for glass formation in metallic and ionic systems. Nature 189 (1961), pp. 131–132.
  • A.L. Greer, Confusion by design. Nature 366 (1993), pp. 303–304.
  • R. Li, S. Pang, C. Ma, and T. Zhang, Influence of similar atom substitution on glass formation in (La–Ce)–Al–Co bulk metallic glasses. Acta Mater. 55 (2007), pp. 3719–3726.
  • C. Suryanarayana and A. Inoue, Bulk Metallic Glasses, 2nd ed., CRC Press, Boca Raton, 2017, pp. 45–138.
  • S.A. Uporov, R.E. Ryltsev, V.A. Bykov, N.S. Uporova, S.K. Estemirova, and N.M. Chtchelkatchev, Glass-forming ability, structure and magnetocaloric effect in Gd-Sc-Co-Ni-Al bulk metallic glasses. J. Alloys Compd. 854 (2021), p. 157170.
  • G. Yang, J. Lian, R. Wang, and N. Wu, Similar atom substitution effect on the glass forming ability in (LaCe)Al-(NiCo) bulk metallic glasses using electron structure guiding. J. Alloys Compd. 786 (2019), pp. 250–256.
  • W. Zhang, S. Chen, Z. Zhu, H. Wang, Y. Li, H. Kato, and H. Zhang, Effect of substituting elements on thermal stability and glass-forming ability of an Al-based AlNiEr metallic glass. J. Alloys Compd. 707 (2017), pp. 97–101.
  • J.S. Saini, J.P. Miska, F. Lei, N. AuYeung, and D. Xu, Hafnium based metallic glasses with high density and high glass-forming ability. J. Alloys Compd. 882 (2021), p. 160896.
  • D.C. Qiao and A. Peker, Enhanced glass forming ability in Zr-based bulk metallic glasses with Hf addition. Intermetallics 24 (2012), pp. 115–119.
  • A. Inoue, T. Zhang, M.W. Chen, T. Sakurai, J. Saida, and M. Matsushita, Ductile quasicrystalline alloys. Appl. Phys. Lett. 76 (2000), pp. 967–969.
  • S.T. Deng, P.F. Yan, H.F. Zhang, A.M. Wang, and Z.Q. Hu, Transformation of precipitated phases in Zr50.5Cu34.5-xNi4Al11Agx master ingots with adding Ag. Mater. Sci. Technol. 27 (2011), pp. 1632–1638.
  • Y.J. Yang, B.Y. Cheng, J.W. Lv, B. Li, M.Z. Ma, X.Y. Zhang, G. Li, and R.P. Liu, Effect of Ag substitution for Ti on glass-forming ability, thermal stability and mechanical properties of Zr-based bulk metallic glasses. Mater. Sci. Eng. A 746 (2019), pp. 229–238.
  • T. Zhang and A. Inoue, Density, thermal stability and mechanical properties of Zr-Ti-Al-Cu-Ni bulk amorphous alloys with high Al plus Ti concentrations. Mater. Trans. JIM 39 (1998), pp. 857–862.
  • D. Cao, Y. Wu, H.X. Li, X.J. Liu, H. Wang, X.Z. Wang, and Z.P. Lu, Beneficial effects of oxygen addition on glass formation in a high-entropy bulk metallic glass. Intermetallics 99 (2018), pp. 44–50.
  • D. Granata, E. Fischer, and J.F. Löffler, Hydrogen microalloying as a viable strategy for enhancing the glass-forming ability of Zr-based bulk metallic glasses. Scrip.Mat. 103 (2015), pp. 53–56.
  • A.E. Dwight, M.H. Mueller, R.A. Conner, J.W. Downey, and H. Knott, Ternary compounds with the Fe2P-type structure. Trans. Am. Inst. Min. Eng. 242 (1968), pp. 2075–2080.
  • JCPDS No. 18-0440. International center for diffraction data. Newton Square, PA, 1995, pp.
  • P. Villars, A. Prince, and H. Okamoto, eds. Handbook of Ternary Alloy Phase Diagrams, ASM International Publishing, Ohio, 1995, p. 3219.
  • K.H.J. Buschow, J.H. Wernick, and G.Y. Chin, Note on the Hf-Co phase diagram. J. Less Common Met. 59 (1978), pp. 61–67.
  • A.E. Dwight, CsCl-type equiatomic phases in binary alloys of transition elements. Trans. Am. Inst. Min. Metall. Pet. Eng. 215 (1959), pp. 283–286.
  • D. Turnbull, Under what conditions can a glass be formed? Contemp. Phys. 10 (1969), pp. 473–488.
  • Z.P. Lu and C.T. Liu, A new glass forming ability criteria for bulk metallic glasses. Acta Mater. 50 (2002), pp. 3501–3512.
  • C. Suryanarayana, I. Seki, and A. Inoue, A critical analysis of the glass-forming ability of alloys. J. Non-Cryst. Solids 355 (2009), pp. 355–360.
  • K.J. Laws, D.B. Miracle, and M. Ferry, A predictive structural model for bulk metallic glasses. Nat. Commun. 6 (2015), p. 8123.
  • A. Inoue, T. Zhang, and T. Masumoto, Production of amorphous cylinder and sheet of La55Al25Ni20 alloy by a metallic mold casting method. Mater.Trans. JIM 31 (1990), pp. 425–428.
  • S. Li, R.J. Wang, M.X. Pan, D.Q. Zhao, and W.H. Wang, Formation and properties of RE55Al25Co20 (RE=Y, Ce, La, Pr, Nd, Gd, Tb, Dy, Ho and Er) bulk metallic glasses. J. Non-Cryst. Solids 354 (2008), pp. 1080–1088.
  • D. Shriver, M. Weller, T. Overton, J. Rourke, and F. Armstrong, Inorganic Chemistry, 6th ed., W.H. Freeman and Company, New York, 2014, p. 293.
  • Q.K. Jiang, G.Q. Zhang, L.Y. Chen, J.Z. Wu, H.G. Zhang, and J.Z. Jiang, Glass formability, thermal stability and mechanical properties of La-based bulk metallic glasses. J. Alloys Compd. 424 (2006), pp. 183–186.
  • E.S. Park, J.Y. Lee, and D.H. Kim, Effect of Ag addition on the improvement of glass-forming ability and plasticity of Mg–Cu–Gd bulk metallic glass. J. Mater. Res. 20 (2005), pp. 2379–2385.
  • F.Q. Guo, S.J. Poon, and G.J. Shiflet, Metallic glass ingots based on yttrium. Appl. Phys. Lett. 83 (2003), pp. 2575–2577.
  • N.C. Wu, L. Zuo, J.Q. Wang, and E. Ma, Designing aluminum-rich bulk metallic glasses via electronic-structure-guided microalloying. Acta Mater. 108 (2016), pp. 143–151.
  • A. Inoue, N. Nishiyama, and T. Masumoto, Preparation of bulk glassy Pd40Ni10Cu30P20 alloy of 40 mm in diameter by water quenching. Mater. Trans. JIM 37 (1996), pp. 181–184.
  • N. Nishiyama, K. Takenaka, and A. Inoue, Pd30pt17.5Cu32.5P20 alloy with low critical cooling rate of 0.067 K/s. Appl. Phys. Lett. 88 (2006), p. 121908.
  • Y. Zhang, M. Zhou, X. Zhao, and L. Ma, Co substituted Zr-Cu-Al-Ni metallic glasses with enhanced glass-forming ability and high plasticity. J. Non-Cryst. Solids 473 (2017), pp. 120–124.
  • F. Sun, S. Deng, J. Fu, J. Zhu, D. Liang, P. Wang, H. Zhao, F. Gong, J. Ma, Y. Liu, and J. Shen, Superior high-temperature wear resistance of an Ir-Ta-Ni-Nb bulk metallic glass. J. Mater. Sci. Technol. 158 (2023), pp. 121–132.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.