104
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Efficiency of phytoremediation and identification of biotransformation pathways of fluoroquinolones in the aquatic environment

, , &

References

  • Adomas B, Antczak-Marecka J, Nałęcz-Jawecki G, Piotrowicz-Cieślak AI. 2013. Phytotoxicity of enrofloxacin soil pollutant to narrow-leaved lupin plant. Pol J Environ Stud. 22(1):71–76.
  • Ahmad I, Bano R, Sheraz MA, Ahmed S, Mirza T, Ansari SA. 2013. Photodegradation of levofloxacin in aqueous and organic solvents: a kinetic study. Acta Pharm. 63(2):223–229. doi: 10.2478/acph-2013-0011.
  • Aristilde L, Melis A, Sposito G. 2010. Inhibition of photosynthesis by a fluoroquinolone antibiotic. Environ Sci Technol. 44(4):1444–1450. doi: 10.1021/es902665n.
  • Chen Q, Zhang L, Han Y, Fang J, Wang H. 2020. Degradation and metabolic pathways of sulfamethazine and enrofloxacin in Chlorella vulgaris and Scenedesmus obliquus treatment systems. Environ Sci Pollut Res Int. 27(22):28198–28208. doi: 10.1007/s11356-020-09008-4.
  • Eggen T, Asp TN, Grave K, Hormazabal V. 2011. Uptake and translocation of metformin, ciprofloxacin and narasin in forage- and crop plants. Chemosphere. 85(1):26–33. doi: 10.1016/j.chemosphere.2011.06.041.
  • Ezelarab HAA, Abbas SH, Hassan HA, Abuo-Rahma GEDA. 2018. Recent updates of fluoroquinolones as antibacterial agents. Arch Pharm. 351(9):e1800141. doi: 10.1002/ardp.201800141.
  • Fish DN, Chow AT. 1997. The clinical pharmacokinetics of levofloxacin. Clin Pharmacokinet. 32(2):101–119. doi: 10.2165/00003088-199732020-00002.
  • Girardi C, Greve J, Lamshöft M, Fetzer I, Miltner A, Schäffer A, Kästner M. 2011. Biodegradation of ciprofloxacin in water and soil and its effects on the microbial communities. J Hazard Mater. 198:22–30. doi: 10.1016/j.jhazmat.2011.10.004.
  • Gomes MP, Gonçalves CA, de Brito JCM, Souza AM, da Silva Cruz FV, Bicalho EM, Figueredo CC, Garcia QS. 2017. Ciprofloxacin induces oxidative stress in duckweed (Lemna minor L.): implications for energy metabolism and antibiotic-uptake ability. J Hazard Mater. 328:140–149. doi: 10.1016/j.jhazmat.2017.01.005.
  • Gomes MP, Moreira Brito JC, Cristina Rocha D, Navarro-Silva MA, Juneau P. 2020. Individual and combined effects of amoxicillin, enrofloxacin, and oxytetracycline on Lemna minor physiology. Ecotoxicol Environ Saf. 203:111025. doi: 10.1016/j.ecoenv.2020.111025.
  • Guo H, Ke T, Gao N, Liu Y, Cheng X. 2017. Enhanced degradation of aqueous norfloxacin and enrofloxacin by UV-activated persulfate: kinetics, pathways and deactivation. Chem Eng J. 316:471–480. doi: 10.1016/j.cej.2017.01.123.
  • Haddad T, Kümmerer K. 2014. Characterization of photo-transformation products of the antibiotic drug ciprofloxacin with liquid chromatography–tandem mass spectrometry in combination with accurate mass determination using an LTQ-Orbitrap. Chemosphere. 115(1):40–46. doi: 10.1016/j.chemosphere.2014.02.013.
  • Hemeryck A, Mamidi RNVS, Bottacini M, Macpherson D, Kao M, Kelley MF. 2006. Pharmacokinetics, metabolism, excretion and plasma protein binding of 14C-levofloxacin after a single oral administration in the Rhesus monkey. Xenobiotica. 36(7):597–613. doi: 10.1080/00498250600674436.
  • Hoang TTT, Tu LTC, Le NP, Dao QP. 2013. A preliminary study on the phytoremediation of antibiotic contaminated sediment. Int J Phytoremediation. 15(1):65–76. doi: 10.1080/15226514.2012.670316.
  • Janecko N, Pokludova L, Blahova J, Svobodova Z, Literak I. 2016. Implications of fluoroquinolone contamination for the aquatic environment—a review. Environ Toxicol Chem. 35(11):2647–2656. doi: 10.1002/etc.3552.
  • Junza A, Barbosa S, Codony MR, Jubert A, Barbosa J, Barrón D. 2014. Identification of metabolites and thermal transformation products of quinolones in raw cow’s milk by liquid chromatography coupled to high-resolution mass spectrometry. J Agric Food Chem. 62(8):2008–2021. doi: 10.1021/jf405554z.
  • Kaur A, Salunke DB, Umar A, Mehta SK, Sinha ASK, Kansal SK. 2017. Visible light driven photocatalytic degradation of fluoroquinolone levofloxacin drug using Ag2O/TiO2 quantum dots: a mechanistic study and degradation pathway. New J Chem. 41(20):12079–12090. doi: 10.1039/C7NJ02053H.
  • Kitamura RSA, Vicentini M, Bitencourt V, Vicari T, Motta W, Brito JCM, Cestari MM, Prodocimo MM, de Assis HCS, Gomes MP. 2023. Salvinia molesta phytoremediation capacity as a nature-based solution to prevent harmful effects and accumulation of ciprofloxacin in Neotropical catfish. Environ Sci Pollut Res Int. 30(14):41848–41863. doi: 10.1007/s11356-023-25226-y.
  • Kokoszka K, Zieliński W, Korzeniewska E, Felis E, Harnisz M, Bajkacz S. 2022. Suspect screening of antimicrobial agents transformation products in environmental samples development of LC-QTrap method running in pseudo MRM transitions. Sci Total Environ. 808:152114. doi: 10.1016/j.scitotenv.2021.152114.
  • Li Y, Zhang F, Liang X, Yediler A. 2013. Chemical and toxicological evaluation of an emerging pollutant (enrofloxacin) by catalytic wet air oxidation and ozonation in aqueous solution. Chemosphere. 90(2):284–291. doi: 10.1016/j.chemosphere.2012.06.068.
  • Liao X, Li B, Zou R, Dai Y, Xie S, Yuan B. 2016. Biodegradation of antibiotic ciprofloxacin: pathways, influential factors, and bacterial community structure. Environ Sci Pollut Res Int. 23(8):7911–7918. doi: 10.1007/s11356-016-6054-1.
  • Lillenberg M, Nei L, Roasto M. 2010. Enrofloxacin and ciprofloxacin uptake by plants from soil. Agron Res. 1:807–814.
  • Liu X, Liu Y, Xu JR, Ren KJ, Meng XZ. 2016. Tracking aquaculture-derived fluoroquinolones in a mangrove wetland, South China. Environ Pollut. 219:916–923. doi: 10.1016/j.envpol.2016.09.011.
  • Mahmood AR, Al-Haideri HH, Hassan FM. 2019. Detection of antibiotics in drinking water treatment plants in Baghdad City, Iraq. Adv Public Health. 2019:1–10. doi: 10.1155/2019/7851354.
  • Marques RZ, Wistuba N, Brito JCM, Bernardoni V, Rocha DC, Gomes MP. 2021. Crop irrigation (soybean, bean, and corn) with enrofloxacin-contaminated water leads to yield reductions and antibiotic accumulation. Ecotoxicol Environ Saf. 216(March):112193. doi: 10.1016/j.ecoenv.2021.112193.
  • Migliore L, Cozzolino S, Fiori M. 2003. Phytotoxicity to and uptake of enrofloxacin in crop plants. Chemosphere. 52(7):1233–1244. doi: 10.1016/S0045-6535(03)00272-8.
  • Pan LJ, Li J, Li CX, Tang XD, Yu GW, Wang Y. 2018. Study of ciprofloxacin biodegradation by a Thermus sp. isolated from pharmaceutical sludge. J Hazard Mater. 343:59–67. doi: 10.1016/j.jhazmat.2017.09.009.
  • Parshikov IA, Heinze TM, Moody JD, Freeman JP, Williams AJ, Sutherland JB. 2001. The fungus Pestalotiopsis guepini as a model for biotransformation of ciprofloxacin and norfloxacin. Appl Microbiol Biotechnol. 56(3–4):474–477. doi: 10.1007/s002530100672.
  • Paul T, Dodd MC, Strathmann TJ. 2010. Photolytic and photocatalytic decomposition of aqueous ciprofloxacin: transformation products and residual antibacterial activity. Water Res. 44(10):3121–3132. doi: 10.1016/j.watres.2010.03.002.
  • Peixoto PS, Tóth IV, Segundo MA, Lima JLFC. 2016. Fluoroquinolones and sulfonamides: features of their determination in water. A review. Int J Environ Anal Chem. 96(2):185–202. doi: 10.1080/03067319.2015.1128539.
  • Pereira AMPT, Silva LJG, Meisel LM, Pena A. 2015. Fluoroquinolones and tetracycline antibiotics in a Portuguese aquaculture system and aquatic surroundings: occurrence and environmental impact. J Toxicol Environ Health A. 78(15):959–975. doi: 10.1080/15287394.2015.1036185.
  • Rehman K, Ijaz A, Arslan M, Afzal M. 2019. Floating treatment wetlands as biological buoyant filters for wastewater reclamation. Int J Phytoremed. 21(13):1273–1289. doi: 10.1080/15226514.2019.1633253.
  • Rusch M, Spielmeyer A, Zorn H, Hamscher G. 2019. Degradation and transformation of fluoroquinolones by microorganisms with special emphasis on ciprofloxacin. Appl Microbiol Biotechnol. 103(17):6933–6948. doi: 10.1007/s00253-019-10017-8.
  • Sciscenko I, Arques A, Varga Z, Bouchonnet S, Monfort O, Brigante M, Mailhot G. 2021. Significant role of iron on the fate and photodegradation of enrofloxacin. Chemosphere. 270:129791. doi: 10.1016/j.chemosphere.2021.129791.
  • Shah SWA, Rehman MU, Anwar S, Hayat A, Shabir G, Tahseen R, Rahman M, Islam E, Iqbal S, Afzal M. 2023. Macrophytes’ performance in floating treatment wetlands for the remediation of ciprofloxacin‐contaminated water. CLEAN Soil Air Water. 51(2):2100435. doi: 10.1002/clen.202100435.
  • Shah SWA, Rehman MU, Tauseef M, Islam E, Hayat A, Iqbal S, Arslan M, Afzal M. 2022. Ciprofloxacin removal from aqueous media using floating treatment wetlands supported by immobilized bacteria. Sustainability. 14(21):14216. doi: 10.3390/su142114216.
  • Shikha S, Gauba P. 2016. Phytoremediation of pharmaceutical products. Innov J Life Sci. 4(3):14–17.
  • Stando K, Korzeniewska E, Felis E, Harnisz M, Bajkacz S. 2022. Uptake of pharmaceutical pollutants and their metabolites from soil fertilized with manure to parsley tissues. Molecules. 27(14):4378. doi: 10.3390/molecules27144378.
  • Stando K, Korzeniewska E, Felis E, Harnisz M, Buta-Hubeny M, Bajkacz S. 2022. Determination of antimicrobial agents and their transformation products in an agricultural water–soil system modified with manure. Sci Rep. 12(1):17529. doi: 10.1038/s41598-022-22440-5.
  • Timofeeva SS, Tyukalova OV, Timofeev SS. 2022. Environmental risk and possibilities of ciprofloxacin phytoremediation. IOP Conf Ser Earth Environ Sci. 1061(1):012025. doi: 10.1088/1755-1315/1061/1/012025.
  • Wagil M, Kumirska J, Stolte S, Puckowski A, Maszkowska J, Stepnowski P, Białk-Bielińska A. 2014. Development of sensitive and reliable LC–MS/MS methods for the determination of three fluoroquinolones in water and fish tissue samples and preliminary environmental risk assessment of their presence in two rivers in northern Poland. Sci Total Environ. 493:1006–1013. doi: 10.1016/j.scitotenv.2014.06.082.
  • Wei Z, van Le Q, Peng W, Yang Y, Yang H, Gu H, Lam SS, Sonne C. 2021. A review on phytoremediation of contaminants in air, water and soil. J Hazard Mater. 403:123658. doi: 10.1016/j.jhazmat.2020.123658.
  • World Health Organization. 2018. WHO report on surveillance of antibiotic consumption 2016–2018 early implementation. Geneva: World Health Organization.
  • Yan Y, Deng Y, Li W, Du W, Gu Y, Li J, Xu X. 2021. Phytoremediation of antibiotic-contaminated wastewater: insight into the comparison of ciprofloxacin absorption, migration, and transformation process at different growth stages of E. crassipes. Chemosphere. 283:131192. doi: 10.1016/j.chemosphere.2021.131192.
  • Yan Y, Pengmao Y, Xu X, Zhang L, Wang G, Jin Q, Chen L. 2020. Migration of antibiotic ciprofloxacin during phytoremediation of contaminated water and identification of transformation products. Aquat Toxicol. 219:105374. doi: 10.1016/j.aquatox.2019.105374.
  • Yu X, Chen J, Liu X, Sun Y, He H. 2022. The mechanism of uptake and translocation of antibiotics by pak choi (Brassica rapa subsp. chinensis). Sci Total Environ. 810:151748. doi: 10.1016/j.scitotenv.2021.151748.
  • Zhao CY, Ru S, Cui P, Qi X, Kurade MB, Patil SM, Jeon BH, Xiong JQ. 2021. Multiple metabolic pathways of enrofloxacin by Lolium perenne L.: ecotoxicity, biodegradation, and key driven genes. Water Res. 202:117413. doi: 10.1016/j.watres.2021.117413.
  • Zheng YJ, He JM, Zhang RP, Wang YC, Wang JX, Wang HQ, Wu Y, He WY, Abliz Z. 2014. An integrated approach for detection and characterization of the trace impurities in levofloxacin using liquid chromatography–tandem mass spectrometry. Rapid Commun Mass Spectrom. 28(10):1164–1174. doi: 10.1002/rcm.6886.
  • Zieliński W, Korzeniewska E, Harnisz M, Drzymała J, Felis E, Bajkacz S. 2021. Wastewater treatment plants as a reservoir of integrase and antibiotic resistance genes – an epidemiological threat to workers and environment. Environ Int. 156:106641. doi: 10.1016/j.envint.2021.106641.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.