71
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Plant extracts as an eco-friendly approach to remove paraquat from aqueous solution

ORCID Icon, &

References

  • Ahmadpour N, Sayadi MH, Sobhani S, Hajiani M. 2020. Photocatalytic degradation of model pharmaceutical pollutant by novel magnetic TiO2@ ZnFe2O4/Pd nanocomposite with enhanced photocatalytic activity and stability under solar light irradiation. J Environ Manage. 271:110964. doi: 10.1016/j.jenvman.2020.110964.
  • Barakan S, Aghazadeh V. 2021. The advantages of clay mineral modification methods for enhancing adsorption efficiency in wastewater treatment: a review. Environ Sci Pollut Res Int. 28(3):2572–2599. doi: 10.1007/s11356-020-10985-9.
  • Berry C, La Vecchia C, Nicotera P. 2010. Paraquat and Parkinson’s disease. Cell Death Differ. 17(7):1115–1125. doi: 10.1038/cdd.2009.217.
  • Dehgani Z, Sedghi Asl M, Ghaedi M, Sabzehmeidani MM, Adhami E. 2020. Removal of paraquat from aqueous solutions by a bentonite modified zero-valent iron adsorbent. New J Chem. 44(31):13368–13376. doi: 10.1039/D0NJ02259D.
  • Ebrahimi A, Lakouraj MM, Hasantabar V. 2020. Synthesis and characterization of amphiphilic star copolymer of polyaniline and polyacrylic acid based on Calix [4] resorcinarene as an efficient adsorbent for removal of paraquat herbicide from the water. Mater Today Commun. 25:101523. doi: 10.1016/j.mtcomm.2020.101523.
  • Franco DS, Georgin J, Lima EC, Silva LF. 2022. Advances made in removing paraquat herbicide by adsorption technology: A review. J Water Process Eng. 49:102988. doi: 10.1016/j.jwpe.2022.102988.
  • Hammami H, Alaie E, Dastgheib SMM. 2018. The ability of Silybum marianum to phytoremediate cadmium and/or diesel oil from the soil. Int J Phytoremediation. 20(8):756–763. doi: 10.1080/15226514.2015.1058336.
  • Hammami H, Aliverdi A, Parsa M. 2014b. Effectiveness of clodinafop-propargyl, haloxyfop-p-methyl and difenzoquat-methyl-sulfate plus Adigor® and Propel™ adjuvants in controlling Avena ludoviciana Durieu. J Agric Sci Technol. 16:291–299.
  • Hammami H, Mozafarjalali M, Hajiani M, Nassirli H. 2022a. Removal of paraquat from aqueous solutions by plant extracts as an eco-friendly approach. Int J Phytoremediation. 24(11):1222–1230. doi: 10.1080/15226514.2021.2025037.
  • Hammami H, Parsa M, Bayat H, Aminifard MH. 2022b. The behavior of heavy metals in relation to their influence on the common bean (Phaseolus vulgaris) symbiosis. Environ Exp Bot. 193:104670. doi: 10.1016/j.envexpbot.2021.104670.
  • Hammami H, Parsa M, Mohassel MHR, Rahimi S, Mijani S. 2016. Weeds ability to phytoremediate cadmium-contaminated soil. Int J Phytoremediation. 18(1):48–53. doi: 10.1080/15226514.2015.1058336.
  • Hammami H, Rashed Mohassel MH, Aliverdi A. 2011. Surfactant and rainfall influenced clodinafop-propargyl efficacy to control wild oat (Avena ludoviciana Durieu.). Aust J Crop Sci. 5(1):39–43.
  • Hammami H, Rashed Mohassel MH, Parsa M, Bannayan-Aval M, Zand E, Hassanzadeh-Khayyat M, Nassirli H. 2014a. Photochemical behavior of sethoxydim in the presence of vegetable oils. J Agric Food Chem. 62(27):6263–6268. doi: 10.1021/jf501447x.
  • Hosseini M, Pourabadeh A, Fakhri A, Hallajzadeh J, Tahami S. 2018. Synthesis and characterization of Sb2S3-CeO2/chitosan-starch as a heterojunction catalyst for photo-degradation of toxic herbicide compound: optical, photo-reusable, antibacterial and antifungal performances. Int J Biol Macromol. 118(Pt B):2108–2112. doi: 10.1016/j.ijbiomac.2018.07.065.
  • Hosseini N, Toosi MR. 2019. Removal of 2, 4-D, glyphosate, trifluralin, and butachlor herbicides from water by polysulfone membranes mixed by graphene oxide/TiO2 nanocomposite: a study of filtration and batch adsorption. J Environ Health Sci Eng. 17(1):247–258. doi: 10.1007/s40201-019-00344-3.
  • Huang Y, Zhan H, Bhatt P, Chen S. 2019. Paraquat degradation from contaminated environments: current achievements and perspectives. Front Microbiol. 10:1754. doi: 10.3389/fmicb.2019.01754.
  • Izadi-Darbandi E, Aliverdi A, Hammami H. 2013. Behavior of vegetable oils in relation to their influence on herbicides’effectiveness. Ind Crops Prod. 44:712–717. doi: 10.1016/j.indcrop.2012.08.023.
  • Jafarinejad S. 2015. Recent advances in determination of herbicide paraquat in environmental waters and its removal from aqueous solutions: a review. Int Res J Appl Basic Sci. 9:1758–1774.
  • Jindakaraked M, Khan E, Kajitvichyanukul P. 2021. Biodegradation of paraquat by Pseudomonas putida and Bacillus subtilis immobilized on ceramic with supplemented wastewater sludge. Environ Pollut. 286:117307. doi: 10.1016/j.envpol.2021.117307.
  • Jodeh S, Hanbali G, Tighadouini S, Radi S, Hamed O, Jodeh D. 2019. Removal and extraction efficiency of Quaternary ammonium herbicides paraquat (PQ) from aqueous solution by ketoenol–pyrazole receptor functionalized silica hybrid adsorbent (SiNPz). BMC Chem. 13(1):86. doi: 10.1186/s13065-019-0599-2.
  • Junthip J, Jumrernsuk N, Klongklaw P, Promma W, Sonsupap S. 2019. Removal of paraquat herbicide from water by textile coated with anionic cyclodextrin polymer. SN Appl Sci. 1(1):1–12. doi: 10.1007/s42452-018-0102-z.
  • Junthip J. 2018. Coating of PET textiles with anionic cyclodextrin polymer for paraquat removal from aqueous solution. Fibers Polym. 19(11):2335–2343. doi: 10.1007/s12221-018-8557-5.
  • Kargar F, Bemani A, Sayadi MH, Ahmadpour N. 2021. Synthesis of modified beta bismuth oxide by titanium oxide and highly efficient solar photocatalytic properties on hydroxychloroquine degradation and pathways. J Photochem Photobiol A Chem. 419:113453. doi: 10.1016/j.jphotochem.2021.113453.
  • Kesari R, Rai M, Gupta VK. 1997. Spectrophotometric method for determination of paraquat in food and biological samples. J AOAC Int. 80(2):388–391. doi: 10.1093/jaoac/80.2.388.
  • Kouchakinejad R, Shariati S, Abolhasani J, Kalhor EG, Vardini MT. 2022. Core-shells of magnetite nanoparticles decorated by SBA-3-SO3H mesoporous silica for magnetic solid phase adsorption of paraquat herbicide from aqueous solutions. Colloids Surf, A. 643:128709. doi: 10.1016/j.colsurfa.2022.128709.
  • Kumar A, Kumar A, Sharma G, Ala’a H, Naushad M, Ghfar AA, Guo C, Stadler FJ. 2018. Biochar-templated g-C3N4/Bi2O2CO3/CoFe2O4 nano-assembly for visible and solar assisted photo-degradation of paraquat, nitrophenol reduction and CO2 conversion. Chemical Engineering Journal. 339:393–410. doi: 10.1016/j.cej.2018.01.105.
  • Kumari, Pratibha, Kumar, Sanjay, Nisa, Kharu, Kumar Sharma, Devinder Alka,. 2019. Efficient system for encapsulation and removal of paraquat and diquat from aqueous solution: 4-Sulfonatocalix [n] arenes and its magnetite modified nanomaterials. Journal of Environmental Chemical Engineering, 7(3), 103130. doi: 10.1016/j.jece.2019.103130.
  • Lagergren SK. 1898. About the theory of so-called adsorption of soluble substances. Sven. Vetenskapsakad. Handingarl. 24:1–39.
  • Lee YG, Shin J, Kwak J, Kim S, Son C, Cho KH, Chon K. 2021. Effects of NaOH activation on adsorptive removal of herbicides by biochars prepared from ground coffee residues. Energies. 14(5):1297. doi: 10.3390/en14051297.
  • Li H, Qi H, Yin M, Chen Y, Deng Q, Wang S. 2021. Carbon tubes from biomass with prominent adsorption performance for paraquat. Chemosphere. 262:127797. doi: 10.1016/j.chemosphere.2020.127797.
  • Liu Z, Wang X, Li L, Wei G, Zhao M. 2020. Hydrogen sulfide protects against paraquat-induced acute liver injury in rats by regulating oxidative stress, mitochondrial function, and inflammation. Oxid Med Cell Longev. 2020:6325378. doi: 10.1155/2020/6325378.
  • Lu F, Astruc D. 2018. Nanomaterials for removal of toxic elements from water. Coord Chem Rev. 356:147–164. doi: 10.1016/j.ccr.2017.11.003.
  • Mehmandost N, García-Valverde MT, Soriano ML, Goudarzi N, Lucena R, Chamjangali MA, Cardenas S. 2020. Heracleum persicum based biosorbent for the removal of paraquat and diquat from waters. J Environ Chem Eng. 8(6):104481. doi: 10.1016/j.jece.2020.104481.
  • Mozafarjalali M, Hajiani M, Haji A. 2020. Efficiency of Aptenia cordifolia mucilage in removal of anion dyes from aqueous solution. International Journal of New Chemistry. 7(2):111–124. doi: 10.22034/ijnc.2020.119029.1082.
  • Mueanpun N, Srisuk N, Chaiammart N, Panomsuwan G. 2021. Nanoporous activated carbons derived from water ferns as an adsorbent for removal of paraquat from contaminated water. Materialia. 15:100986. doi: 10.1016/j.mtla.2020.100986.
  • Navarro P, Moreno D, Alvarez J, Santiago R, Hospital-Benito D, Ferro VR, Palomar J. 2019. Stripping columns to regenerate ionic liquids and selectively recover hydrocarbons avoiding vacuum conditions. Ind Eng Chem Res. 58(44):20370–20380. doi: 10.1021/acs.iecr.9b04603.
  • Nguyen CT, Nguyen THH, Tra VT, Tungtakanpoung D, Tran CS, Vo TKQ, Kaewlom P. 2023. Paraquat removal by free and immobilized cells of pseudomonas putida on corn cob biochar. Case Studies in Chemical and Environmental Engineering. 8:100376. doi: 10.1007/s10098-020-01996-8.
  • Nguyen TC. 2020. Kinetic, isotherm, and mechanism in paraquat removal by adsorption processes using different biochars. Lowland Technology International. 22(2) doi: 10.0001/ialt_lti.v22i2,%20Septemb.769.
  • Popp J, Pető K, Nagy J. 2013. Pesticide productivity and food security. a review. Agron Sustain Dev. 33(1):243–255. doi: 10.1007/s13593-012-0105-x.
  • Pourzad A, Sobhi HR, Behbahani M, Esrafili A, Kalantary RR, Kermani M. 2020. Efficient visible light-induced photocatalytic removal of paraquat using N-doped TiO2@ SiO2@ Fe3O4 nanocomposite. J Mol Liq. 299:112167. doi: 10.1016/j.molliq.2019.112167.
  • Rasaie A, Sabzehmeidani MM, Ghaedi M, Ghane-Jahromi M, Sedaratian-Jahromi A. 2021. Removal of herbicide paraquat from aqueous solutions by bentonite modified with mesoporous silica. Mater Chem Phys. 262:124296. doi: 10.1016/j.matchemphys.2021.124296.
  • Rashed Mohassel MH, Aliverdi A, Hamami H, Zand E. 2010. Optimizing the performance of diclofop‐methyl, cycloxydim, and clodinafop‐propargyl on littleseed canarygrass (Phalaris minor) and wild oat (Avena ludoviciana) control with adjuvants. Weed Biol Manage. 10(1):57–63. doi: 10.1111/j.1445-6664.2010.00367.x.
  • Rashidipour M, Heydari R, Maleki A, Mohammadi E, Davari B. 2019. Salt-assisted liquid–liquid extraction coupled with reversed-phase dispersive liquid–liquid microextraction for sensitive HPLC determination of paraquat in environmental and food samples. Food Measure. 13(1):269–276. doi: 10.1007/s11694-018-9941-y.
  • Sayadi MH, Sobhani S, Shekari H. 2019. Photocatalytic degradation of azithromycin using GO@ Fe3O4/ZnO/SnO2 nanocomposites. J Cleaner Prod. 232:127–136. doi: 10.1016/j.jclepro.2019.05.338.
  • Senseman SA. 2007. Herbicide handbook (No. 632.954 W394h9). Lawrence, US: Weed Science Society of America.
  • Shekari H, Sayadi MH, Rezaei MR, Allahresani A. 2017. Synthesis of nickel ferrite/titanium oxide magnetic nanocomposite and its use to remove hexavalent chromium from aqueous solutions. Surf Interfaces. 8:199–205. doi: 10.1016/j.surfin.2017.06.006.
  • Shetty D, Boutros S, Skorjanc T, Garai B, Asfari Z, Raya J, Trabolsi A. 2020. Fast and efficient removal of paraquat in water by porous polycalix [n] arenes (n= 4, 6, and 8). J Mater Chem A. 8(28):13942–13945. doi: 10.1039/D0TA01907K.
  • Thakur S, Verma A, Raizada P, Gunduz O, Janas D, Alsanie WF, Scarpa F, Thakur VK. 2022. Bentonite-based sodium alginate/dextrin cross-linked poly (acrylic acid) hydrogel nanohybrids for facile removal of paraquat herbicide from aqueous solutions. Chemosphere. 291(Pt 3):133002. doi: 10.1016/j.chemosphere.2021.133002.
  • Togue Kamga F. 2019. Modeling adsorption mechanism of paraquat onto Ayous (Triplochiton scleroxylon) wood sawdust. Appl Water Sci. 9(1):1–7. doi: 10.1007/s13201-018-0879-3.
  • Tudi M, Daniel Ruan H, Wang L, Lyu J, Sadler R, Connell D, Chu C, Phung DT. 2021. Agriculture development, pesticide application and its impact on the environment. Int J Environ Res Public Health. 18(3):1112. doi: 10.3390/ijerph18031112.
  • Uematsu Y, Ogata F, Nagai N, Saenjum C, Nakamura T, Kawasaki N. 2021. In vitro removal of paraquat and diquat from aqueous media using raw and calcined basil seed. Heliyon. 7(7):e07644. doi: 10.1016/j.heliyon.2021.e07644.
  • Vaccari C, El Dib R, Gomaa H, Lopes LC, de Camargo JL. 2019. Paraquat and Parkinson’s disease: a systematic review and meta-analysis of observational studies. J Toxicol Environ Health B Crit Rev. 22(5-6):172–202. doi: 10.1080/10937404.2019.1659197.
  • Zbair M, Anfar Z, Ahsaine HA, Khallok H. 2019. Kinetics, equilibrium, statistical surface modeling and cost analysis of paraquat removal from aqueous solution using carbonated jujube seed. RSC Adv. 9(2):1084–1094. doi: 10.1039/c8ra09337g.
  • Zeinvand-Lorestani H, Nili-Ahmadabadi A, Balak F, Hasanzadeh G, Sabzevari O. 2018. Protective role of thymoquinone against paraquat-induced hepatotoxicity in mice. Pestic Biochem Physiol. 148:16–21. doi: 10.1016/j.pestbp.2018.03.006.
  • Zhang D, Yin C, Abbas N, Mao Z, Zhang Y. 2020. Multiple heavy metal tolerance and removal by an earthworm gut fungus Trichoderma brevicompactum QYCD-6. Sci Rep. 10(1):6940. doi: 10.1038/s41598-020-63813-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.