159
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Mesoporous activated carbon derived from fruit by-product by pyrolysis induced chemical activation: optimization and mechanism for fuchsin basic dye removal

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abbas M. 2022. Removal of basic fuchsine (BF) in aqueous solution by adsorption process onto ‘Prunus Cerasefera’ (LPC): kinetics, isotherm modeling and thermodynamic study. J Eng Fibers Fabr. 17:155892502199185. doi: 10.1177/1558925021991854.
  • Arangadi AF, Ali JK, Jaoude MA, Anjum DH, AlKhoori A, Polychronopoulou K, Alhseinat E. 2022. Role of embedding choline chloride-urea deep eutectic solvent on biomass-derived porous activated carbon in its capacitive deionization performance. Desalination. 530:115674. doi: 10.1016/j.desal.2022.115674.
  • Arumugasamy SK, Chellasamy G, Sekar S, Lee S, Govindaraju S, Yun K. 2022. TriMOF synergized on the surface of activated carbon produced from pineapple leaves for the environmental pollutant reduction and oxygen evolution process. Chemosphere. 286(Pt 3):131893. doi: 10.1016/j.chemosphere.2021.131893.
  • Aryee AA, Gao C, Han R, Qu L. 2022. Functionalized magnetic biocomposite based on peanut husk for the efficient sequestration of basic dyes in single and binary systems: adsorption mechanism and antibacterial study. J Environ Chem Eng. 10(4):108205. doi: 10.1016/j.jece.2022.108205.
  • Ashrafi SD, Safari GH, Sharafi K, Kamani H, Jaafari J. 2021. Adsorption of 4-Nitrophenol on calcium alginate-multiwall carbon nanotube beads: modeling, kinetics, equilibriums and reusability studies. Int J Biol Macromol. 185:66–76. doi: 10.1016/j.ijbiomac.2021.06.08.
  • Azam K, Shezad N, Shafiq I, Akhter P, Akhtar F, Jamil F, Shafique S, Park Y, Hussain M. 2022. A review on activated carbon modifications for the treatment of wastewater containing anionic dyes. Chemosphere. 306:135566. doi: 10.1016/j.chemosphere.2022.135566.
  • Cai Y, Liu L, Tian H, Yang Z, Luo X. 2019. Adsorption and desorption performance and mechanism of tetracycline hydrochloride by activated carbon-based adsorbents derived from sugar cane bagasse activated with ZnCl2. Molecules. 24(24):4534. doi: 10.3390/molecules24244534.
  • Cheng L, Zhang Y, Fan W, Ji Y. 2022. Synergistic adsorption-photocatalysis for dyes removal by a novel biochar–based Z-scheme heterojunction BC/2ZIS/WO3: mechanistic investigation and degradation pathways. Chem Eng J. 445:136677. doi: 10.1016/j.cej.2022.136677.
  • Da Silva AMB, Paranha G, Maia LS, Mulinari DR. 2021. Development of activated carbon from pineapple crown wastes and its potential use for removal of methylene blue. J Nat Fibers. 19(13):5211–5226. doi: 10.1080/15440478.2021.1875365.
  • Dalvand A, Nabizadeh R, Ganjali MR, Khoobi M, Nazmara S, Mahvi AH. 2016. Modeling of Reactive Blue 19 azo dye removal from colored textile wastewater using L-arginine-functionalized Fe3O4 nanoparticles: optimization, reusability, kinetic and equilibrium studies. J Magn Magn Mater. 404:179–189. doi: 10.1016/j.jmmm.2015.12.040.
  • Dao MH, Le HM, Hoang HG, Tran VA, Doan V, Le TPQ, Sirotkin A, Le VB. 2021. Natural core-shell structure activated carbon beads derived from Litsea glutinosa seeds for removal of methylene blue: facile preparation, characterization, and adsorption properties. Environ Res. 198:110481. doi: 10.1016/j.envres.2020.110481.
  • De Araujo CMB, Ghislandi MG, Rios AG, Da Costa GG, Nascimento BLCD, Ferreira AR, Da Motta Sobrinho MA, Rodrigues AE. 2022. Wastewater treatment using recyclable agar-graphene oxide biocomposite hydrogel in batch and fixed-bed adsorption column: bench experiments and modeling for the selective removal of organics. Colloids Surf A. 639:128357. doi: 10.1016/j.colsurfa.2022.128357.
  • De Toledo W, Pinheiro RA, Trava-Airoldi VJ, Corat EJ. 2022. Development of boron-doped diamond (BDD) deposited on carbon nanotubes (CNT) to form BDD/CNT structures relevant for electrochemical degradation. Diamond Relat Mater. 127:109159. doi: 10.1016/j.diamond.2022.109159.
  • Ebisike K, Okoronkwo AE, Alaneme KK, Akinribide OJ. 2022. Thermodynamic study of the adsorption of Cd2+ and Ni2+ onto chitosan—silica hybrid aerogel from aqueous solution. Results Chem. 5:100730. doi: 10.1016/j.rechem.2022.100730.
  • Freundlich HMF. 1906. Over the adsorption in solution. J Phys Chem. 57:385–471.
  • Gayathiri M, Pulingam T, Lee KS, Sudesh K. 2022. Activated carbon from biomass waste precursors: factors affecting production and adsorption mechanism. Chemosphere. 294:133764. doi: 10.1016/j.chemosphere.2022.133764.
  • Gonçalves M, Castro CS, Boas IK, Soler FC, De C Pinto E, Lavall RL, Carvalho W. 2019. Glycerin waste as sustainable precursor for activated carbon production: adsorption properties and application in supercapacitors. J Environ Chem Eng. 7(3):103059. doi: 10.1016/j.jece.2019.103059.
  • Grover A, Mohiuddin I, Malik AK, Aulakh JS, Vikrant K, Kim K-H, Brown RJC. 2022. Magnesium/aluminum layered double hydroxides intercalated with starch for effective adsorptive removal of anionic dyes. J Hazard Mater. 424(Pt B):127454. doi: 10.1016/j.jhazmat.2021.127454.
  • Ho YK, McKay G. 1998. Sorption of dye from aqueous solution by peat. Chem Eng J. 70(2):115–124. doi: 10.1016/s0923-0467(98)00076-1.
  • Hoang AT, Kumar S, Lichtfouse E, Cheng CK, Varma RS, Senthilkumar N, Phong Nguyen PQ, Nguyen XP. 2022. Remediation of heavy metal polluted waters using activated carbon from lignocellulosic biomass: an update of recent trends. HAL (Le Centre Pour La Communication Scientifique Directe). 302:134825. doi: 10.1016/j.chemosphere.2022.134825.
  • Jawad AH, Abdulhameed AS, Bahrudin NN, Hum NNMF, Surip SN, Hu S, Yousif E, Sabar S. 2021. Microporous activated carbon developed from KOH activated biomass waste: surface mechanistic study of methylene blue dye adsorption. Water Sci Technol. 84(8):1858–1872. doi: 10.2166/wst.2021.355.
  • Jawad AH, Rangabhashiyam S, Abdulhameed AS, Syed-Hassan SSA, ALOthman ZA, Wilson LD. 2022. Process optimization and adsorptive mechanism for reactive blue 19 dye by magnetic crosslinked chitosan/MgO/Fe3O4 biocomposite. J Polym Environ. 30(7):2759–2773. doi: 10.1007/s10924-022-02382-9.
  • Jimoh OS, Ibrahim AO, Bello OS. 2023. Metformin adsorption onto activated carbon prepared by acid activation and carbonization of orange peel. Int J Phytoremediation. 25(2):125–136. doi: 10.1080/15226514.2022.2064815.
  • Köseoğlu E, Akmil-Başar C. 2015. Preparation, structural evaluation and adsorptive properties of activated carbon from agricultural waste biomass. Adv Powder Technol. 26(3):811–818. doi: 10.1016/j.apt.2015.02.006.
  • Kutluay S, Temel F. 2021. Silica gel based new adsorbent having enhanced VOC dynamic adsorption/desorption performance. Colloids Surf A. 609:125848. doi: 10.1016/j.colsurfa.2020.125848.
  • Lagergren S. 1907. Zur Theorie der sogenannten adsorption gelöster Stoffe. Z Chem Ind Der Kolloide. 2(1):15. doi: 10.1007/bf01501332.
  • Langmuir I. 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc. 40(9):1361–1403. doi: 10.1021/ja02242a004.
  • Lee LZ, Ahmad Zaini MA. 2020. One-step ZnCl2/FeCl3 composites preparation of magnetic activated carbon for effective adsorption of rhodamine B dye. Toxin Rev. 41(1):64–81. doi: 10.1080/15569543.2020.1837172.
  • Li Y, Zimmerman AR, He F, Chen J, Han L, Chen H, Hu X, Gao B. 2020. Solvent-free synthesis of magnetic biochar and activated carbon through ball-mill extrusion with Fe3O4 nanoparticles for enhancing adsorption of methylene blue. Sci Total Environ. 722:137972. doi: 10.1016/j.scitotenv.2020.137972.
  • Liu Y, Tan Y, Cheng Z, Liu S, Ren Y, Chen X, Fan M, Shen Z. 2022. Quantitative structure-activity relationship (QSAR) guides the development of dye removal by coagulation. J Hazard Mater. 438:129448. doi: 10.1016/j.jhazmat.2022.129448.
  • Luo X, Cai Y, Liu L, Zeng JC. 2019. Cr(VI) adsorption performance and mechanism of an effective activated carbon prepared from bagasse with a one-step pyrolysis and ZnCl2 activation method. Cellulose. 26(8):4921–4934. doi: 10.1007/s10570-019-02418-9.
  • Modwi A, Khezami L, Ghoniem MG, Nguyen-Tri P, Baaloudj O, Guesmi A, Algethami FK, Amer M, Assadi AA. 2021. Superior removal of dyes by mesoporous MgO/g-C3N4 fabricated through ultrasound method: adsorption mechanism and process modeling. Environ Res. 205:112543. doi: 10.1016/j.envres.2021.112543.
  • Mohammed BB, Hsini A, Abdellaoui Y, Oualid HA, Laabd M, Ouardi ME, Addi AA, Yamni K, Tijani N. 2020. Fe-ZSM-5 zeolite for efficient removal of basic Fuchsin dye from aqueous solutions: synthesis, characterization and adsorption process optimization using BBD-RSM modeling. J Environ Chem Eng. 8(5):104419. doi: 10.1016/j.jece.2020.104419.
  • Mwesigye KA, Zhou B, Wang F, Zhu L, Tang Y. 2023. Novel dye removing agent based on CTS-g-P(AA-co-NIPAM)/GO composite. Arabian J Chem. 16(4):104581. doi: 10.1016/j.arabjc.2023.104581.
  • Naji SZ, Tye CT. 2021. A review of the synthesis of activated carbon for biodiesel production: precursor, preparation, and modification. Energy Convers Manag. 13:100152. doi: 10.1016/j.ecmx.2021.100152.
  • Nassar H, Zyoud A, El-Hamouz A, Tanbour R, Halayqa N, Hilal HS. 2020. Aqueous nitrate ion adsorption/desorption by olive solid waste-based carbon activated using ZnCl2. Sustainable Chem Pharm. 18:100335. doi: 10.1016/j.scp.2020.100335.
  • Nemr AE, Aboughaly RM, Sikaily AE, Masoud MS, Ramadan MF, Ragab S. 2021. Microporous-activated carbons of type I adsorption isotherm derived from sugarcane bagasse impregnated with zinc chloride. Carbon Lett. 32(1):229–249. doi: 10.1007/s42823-021-00270-1.
  • Njoku V, Foo K, Asif M, Hameed B. 2014. Preparation of activated carbons from rambutan (Nephelium lappaceum) peel by microwave-induced KOH activation for acid yellow 17 dye adsorption. Chem Eng J. 250:198–204. doi: 10.1016/j.cej.2014.03.115.
  • Piriya RS, Jayabalakrishnan RM, Maheswari M, Boomiraj K, Oumabady S. 2021. Coconut shell derived ZnCl2 activated carbon for malachite green dye removal. Water Sci Technol. 83(5):1167–1182. doi: 10.2166/wst.2021.050.
  • Rashidi NA, Chai YX, Ismail IS, Othman MR, Yusup S. 2022. Biomass as activated carbon precursor and potential in supercapacitor applications. Biomass Conv Bioref. doi: 10.1007/s13399-022-02351-1.
  • Reshadi MAM, Bazargan A, McKay G. 2020. A review of the application of adsorbents for landfill leachate treatment: focus on magnetic adsorption. Sci Total Environ. 731:138863. doi: 10.1016/j.scitotenv.2020.138863.
  • Şahin Ö, Saka C, Ceyhan A, Baytar O. 2015. Preparation of high surface area activated carbon from Elaeagnus angustifolia seeds by chemical activation with ZnCl2in one-step treatment and its iodine adsorption. Sep Sci Technol. 50(6):886–891. doi: 10.1080/01496395.2014.966204.
  • Said RB, Rahali S, Aissa M, Albadri AE, Modwi A. 2023. Uptake of BF dye from the aqueous phase by CaO-g-C3N4 nanosorbent: construction, descriptions, and recyclability. Inorganics (Basel). 11(1):44. doi: 10.3390/inorganics11010044.
  • Saleem A, Hussain A, Chaudhary A, Ahmad Q, Iqtedar M, Javid A, Akram AM. 2020. Acid hydrolysis optimization of pomegranate peels waste using response surface methodology for ethanol production. Biomass Conv Bioref. 12(5):1513–1524. doi: 10.1007/s13399-020-01117-x.
  • Sayğılı H, Güzel F. 2016. High surface area mesoporous activated carbon from tomato processing solid waste by zinc chloride activation: process optimization, characterization and dyes adsorption. J Cleaner Prod. 113:995–1004. doi: 10.1016/j.jclepro.2015.12.055.
  • Hadi S, Taheri E, Amin MM, Fatehizadeh A, Lima EC. 2021. Fabrication of activated carbon from pomegranate husk by dual consecutive chemical activation for 4-chlorophenol adsorption. Environ Sci Pollut Res Int. 28(11):13919–13930. doi: 10.1007/s11356-020-11624-z.
  • Sing K. 1985. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure Appl Chem. 57(4):603–619. doi: 10.1351/pac198557040603.
  • Temel F, Turkyilmaz M, Küçükçongar S. 2020. Removal of methylene blue from aqueous solutions by silica gel supported calix[4]arene cage: investigation of adsorption properties. Eur Polym J. 125:109540. doi: 10.1016/j.eurpolymj.2020.109540.
  • Temkin MI. 1940. Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physiochim URSS. 12:327–356.
  • Tian T, Liu M, Li Y, Han J, Ren L, Lorenz H, Wu Q, Chen J. 2022. β-Cyclodextrin carbon-based nanoparticles with a core–shell–shell structure for efficient adsorption of crystal violet and bisphenol A. Particuology. 62:88–97. doi: 10.1016/j.partic.2021.04.004.
  • Tripathy A, Mohanty S, Nayak SK, Ramadoss A. 2021. Renewable banana-peel-derived activated carbon as an inexpensive and efficient electrode material showing fascinating supercapacitive performance. J Environ Chem Eng. 9(6):106398. doi: 10.1016/j.jece.2021.106398.
  • Tu B, Chen H, Xue S, Deng J, Tao H. 2021. Ultrafast and efficient removal of aqueous Cr(VI) using iron oxide nanoparticles supported on Bermuda grass-based activated carbon. J Mol Liq. 334:116026. doi: 10.1016/j.molliq.2021.116026.
  • Wang J, Guo X. 2020. Adsorption kinetic models: physical meanings, applications, and solving methods. J Hazard Mater. 390:122156. doi: 10.1016/j.jhazmat.2020.122156.
  • Widanarto W, Budianti SI, Ghoshal SK, Kurniawan C, Handoko E, Alaydrus M. 2022. Improved microwave absorption traits of coconut shells-derived activated carbon. Diamond Relat Mater. 126:109059. doi: 10.1016/j.diamond.2022.109059.
  • Xiang J, Wang X, Ding M, Tang X, Zhang S, Zhang X, Xie Z. 2022. The role of lateral size of MXene nanosheets in membrane filtration of dyeing wastewater: membrane characteristic and performance. Chemosphere. 294:133728. doi: 10.1016/j.chemosphere.2022.133728.
  • Yağmur HK, Kaya İ. 2021. Synthesis and characterization of magnetic ZnCl2-activated carbon produced from coconut shell for the adsorption of methylene blue. J Mol Struct. 1232:130071. doi: 10.1016/j.molstruc.2021.130071.
  • Zaharia M, Vasiliu A, Trofin M, Pamfil D, Bucatariu F, Racovita S, Mihai M. 2021. Design of multifunctional composite materials based on acrylic ion exchangers and CaCO3 as sorbents for small organic molecules. React Funct Polym. 166:104997. doi: 10.1016/j.reactfunctpolym.2021.104997.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.