70
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Emilia fosbergii Nicolson, a novel and effective accumulator for phytoremediation of mercury-contaminated soils

, , , &

References

  • Abdullah SRS, Al-Baldawi IA, Almansoory AF, Purwanti IF, Al-Sbani NH, Sharuddin SSN. 2020. Plant-assisted remediation of hydrocarbons in water and soil: application, mechanisms, challenges and opportunities. Chemosphere. 247:125932. doi: 10.1016/j.chemosphere.2020.125932.
  • Ackova DG. 2018. Heavy metals and their general toxicity on plants. Plant Science Today. 5(1):14–18.
  • Aguirre CFV, Rivera Páez FA, Escobar Vargas S. 2018. Effect of arbuscular mycorrhizae and mercury on Lactuca Sativa (Asteraceae) Seedling Morpho – Histology. Environ Exp Botany. 156(26):197–202. Elsevier doi: 10.1016/j.envexpbot.2018.09.005.
  • Akagi H, Nishimura H. 1991. Speciation of mercury in the environment. In Advances in Mercury Toxicology. Boston (MA): Springer. p. 53–76. doi: 10.1007/978-1-4757-9071-9_3.
  • Alcantara HJP, Rivero GC, Puzon JM. 2013. Tolerance mechanisms in mercury-exposed chromolaena Odorata (l.f.) R.M. King et H. Robinson, a Potential Phytoremediator. J Degraded Mining Lands Manag. 1(1):9–20. doi: 10.15243/jdmlm.2013.011.009.
  • Alengebawy A, Abdelkhalek ST, Qureshi SR, Wang MQ. 2021. Heavy metals and pesticides toxicity in agricultural soil and plants: ecological risks and human health implications. Toxics. 9(3):42. doi: 10.3390/toxics9030042.
  • Amare E, Kebede F, Berihu T, Mulat W. 2018. Field-based investigation on phytoremediation potentials of Lemna Minor and Azolla Filiculoides in tropical, semiarid regions: case of ethiopia. Int J Phytoremediation. 20(10):965–972. doi: 10.1080/15226514.2017.1365333.
  • Awa SH, Hadibarata T. 2020. Removal of heavy metals in contaminated soil by phytoremediation mechanism: a review. Water Air Soil Pollut. 231(2):1–15. doi: 10.1007/s11270-020-4426-0.
  • Baker AJM. 1981. Accumulators and excluders ‐strategies in the response of plants to heavy metals. J Plant Nutrit. 3(1–4):643–654. doi: 10.1080/01904168109362867.
  • Bakshe P, Jugade R. 2023. Phytostabilization and rhizofiltration of toxic heavy metals by heavy metal accumulator plants for sustainable management of contaminated industrial sites: a comprehensive review. J Hazardous Mat Adv. 10(May):100293. doi: 10.1016/j.hazadv.2023.100293.
  • Bank MS. 2020. The mercury science-policy interface: history, evolution and progress of the minamata convention. Sci Total Environ. 722(June):137832. doi: 10.1016/J.SCITOTENV.2020.137832.
  • Bianconi D, Pietrini F, Massacci A, Iannelli MA. 2013. Uptake of cadmium by Lemna Minor, a (Hyper?-) accumulator plant involved in phytoremediation applications. E3S Web of Conferences. 1(April):13002. doi: 10.1051/e3sconf/20130113002.
  • Biudes MS, Vourlitis GL, Gomes Machado N, Zanella de Arruda PH, Neves GAR, de Almeida Lobo F, Neale CMU, de Souza Nogueira J. 2015. Patterns of energy exchange for tropical ecosystems across a climate gradient in Mato Grosso, Brazil. Agricul Forest Meteorol. 202(March):112–124. Elsevier doi: 10.1016/j.agrformet.2014.12.008.
  • Casagrande GCR, Dambros J, Antônio de Andrade E, MaRTello F, Sobral-Souza T, Moreno MIC, Battirola LD, Tortorela de Andrade RL. 2023. Atmospheric mercury in forests: accumulation analysis in a gold mining area in the Southern Amazon, Brazil. Environ Monit Assess. 195(4):477. doi: 10.1007/S10661-023-11063-6/METRICS.
  • Chandra R, Yadav S, Yadav S. 2017. Phytoextraction potential of heavy metals by native wetland plants growing on chlorolignin containing sludge of Pulp and Paper Industry. Ecolog Eng. 98:134–145. doi: 10.1016/j.ecoleng.2016.10.017.
  • Chen J, Shiyab S, Han FX, Monts DL, Waggoner CA, Yang Z, Su Y. 2009. Bioaccumulation and physiological effects of mercury in pteris vittata and nephrolepis Exaltata. Ecotoxicology. 18(1):110–121. doi: 10.1007/S10646-008-0264-3.
  • Clark RB. 1975. Characterization of phosphatase of intact maize roots. J Agric Food Chem. 23(3):458–460. doi: 10.1021/jf60199a002.
  • Dago À, González I, Ariño C, Martínez-Coronado A, Higueras P, Manuel Díaz-Cruz J, Esteban M. 2014. Evaluation of mercury stress in plants from the Almadén Mining District by analysis of phytochelatins and their Hg complexes. Environ Sci Technol. 48(11):6256–6263. American Chemical Society doi: 10.1021/ES405619Y.
  • Danelli T, Sepulcri A, Masetti G, Colombo F, Sangiorgio S, Cassani E, Anelli S, Adani F, Pilu R. 2021. Arundo Donax L. Biomass production in a polluted area: effects of two harvest timings on heavy metals uptake. Two Harvest Timings on Heavy Metals Uptake. Appl. Sci. 11(3):1147. doi: 10.3390/app11031147.
  • Emamverdian A, Ding Y, Mokhberdoran F, Xie Y. 2015. Heavy metal stress and some mechanisms of plant defense response. Scient WorldJ. 2015:756120–756118. Hindawi Publishing Corporation doi: 10.1155/2015/756120.
  • Fernández S, Poschenrieder C, Marcenò C, Gallego JR, Jiménez-Gámez D, Bueno A, Afif E. 2017. Phytoremediation capability of native plant species living on Pb-Zn and Hg-as mining wastes in the cantabrian range, North of Spain. J Geochem Expl. 174(March):10–20. doi: 10.1016/j.gexplo.2016.05.015.
  • Filho OFDL, Da Silva MS, Vareiro WPDO, Zanutto RP. 2018. Limpeza de Areia Para Experimentos Em Nutrição de Plantas. Comunicado Técnico Embrapa. 232:5. https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/1086556/1/Comunicado232.pdf.
  • Fiorentino N, Ventorino V, Rocco C, Cenvinzo V, Agrelli D, Gioia L, Di Mola I, Adamo P, Pepe O, Fagnano M. 2017. Giant reed growth and effects on soil biological fertility in assisted phytoremediation of an industrial polluted soil. Sci Total Environ. 575(January):1375–1383. doi: 10.1016/J.SCITOTENV.2016.09.220.
  • Freitas JA, Ccana-Ccapatinta GV, Da Costa FB. 2020. Pyrrolizidine alkaloids and other constituents from Emilia Fosbergii Nicolson. Biochem Syst Ecol. 92(October):104110. doi: 10.1016/j.bse.2020.104110.
  • Fu S, Wei C, Xiao Y, Li L, Wu D. 2019. Heavy metals uptake and transport by native wild plants: implications for Phytoremediation and Restoration. Environ Earth Sci. 78(4):1–10. doi: 10.1007/s12665-019-8103-9.
  • Gautam M, Pandey D, Agrawal M. 2017. Phytoremediation of metals using lemongrass (Cymbopogon Citratus (D.C.) Stapf.) grown under different levels of red mud in soil amended with biowastes. Int J Phytoremed. 19(6):555–562. Taylor & Francis:555–562. doi: 10.1080/15226514.2016.1267701.
  • Gentès S, Löhrer B, Legeay A, Mazel AF, Anschutz P, ChaRBonnier C, Tessier E, Maury-Brachet R. 2021. Drivers of variability in mercury and methylmercury bioaccumulation and biomagnification in temperate freshwater lakes. Chemosphere. 267:128890. doi: 10.1016/j.chemosphere.2020.128890.
  • Gong X, Huang D, Liu Y, Zeng G, Wang R, Wei J, Huang C, Xu P, Wan J, Zhang C. 2018. Pyrolysis and reutilization of plant residues after phytoremediation of heavy metals contaminated sediments: for heavy metals stabilization and dye adsorption. Bioresour Technol. 253(January):64–71. Elsevier doi: 10.1016/j.biortech.2018.01.018.
  • Guerra Sierra BE, Muñoz Guerrero J, Sokolski S. 2021. Phytoremediation of heavy metals in tropical soils an overview. Sustainability. 13(5):2574. doi: 10.3390/su13052574.
  • Hammami H, Parsa M, Mohassel MHR, Rahimi S, Mijani S. 2016. Weeds ability to phytoremediate cadmium-contaminated soil. Int J Phytoremediation. 18(1):48–53. doi: 10.1080/15226514.2015.1058336.
  • He H, Dong Z, Pang J, Lin Wu G, Zheng J, Zhang X. 2018. Phytoextraction of rhenium by lucerne (Medicago Sativa) and Erect Milkvetch (Astragalus Adsurgens) from alkaline soils amended with coal fly ash. Sci Total Environ. 630:570–577. Elsevier BV doi: 10.1016/j.scitotenv.2018.02.252.
  • Ji X, Liu S, Huang J, Bocharnikova E, Matichenkov V. 2016. Monosilicic acid potential in phytoremediation of the contaminated areas. Chemosphere. 157:132–136. doi: 10.1016/j.chemosphere.2016.05.029.
  • Khalid S, Shahid M, Niazi NK, Murtaza B, Bibi I, Dumat C. 2017. A comparison of technologies for remediation of heavy metal contaminated soils. J Geochem Explorat. 182(vember):247–268. doi: 10.1016/j.gexplo.2016.11.021.
  • Lam EJ, Cánovas M, Gálvez ME, Montofré ÍL, Keith BF, Faz Á. 2017. Evaluation of the phytoremediation potential of native plants growing on a copper mine tailing in Northern Chile. J Geochem Expl. 182:210–217. doi: 10.1016/j.gexplo.2017.06.015.
  • Li F, Qin Y, Zhu L, Xie Y, Liang S, Hu C, Chen X, Deng Z. 2016. Effects of fragment size and sediment heterogeneity on the colonization and growth of myriophyllum spicatum. Ecolog Eng. 95:457–462. doi: 10.1016/j.ecoleng.2016.06.097.
  • Li S, Jia Z. 2018. Heavy metals in soils from a representative rapidly developing megacity (SW China): levels, Source Identification and Apportionment. CATENA. 163(April):414–423. doi: 10.1016/j.catena.2017.12.035.
  • Mamirova A, Pidlisnyuk V, Amirbekov A, Ševců A, Nurzhanova A. 2020. Phytoremediation potential of miscanthus sinensis and in organochlorine pesticides contaminated soil amended by Tween 20 and activated carbon. Environ Sci Pollut Res Int. 28(13):16092–16106. doi: 10.1007/S11356-020-11609-Y.
  • Manikandan R, Sahi SV, Venkatachalam P. 2015. Impact assessment of mercury accumulation and biochemical and molecular response of mentha Arvensis: a potential hyperaccumulator plant. Scientific WorldJ. 2015:715217–715210. doi: 10.1155/2015/715217.
  • Marrugo-Negrete J, Durango-Hernández J, Pinedo-Hernández J, Enamorado-Montes G, Díez S. 2016. Mercury uptake and effects on growth in Jatropha Curcas. J Environ Sci. 48:120–125. doi: 10.1016/j.jes.2015.10.036.
  • Marrugo-Negrete J, Durango-Hernández J, Pinedo-Hernández J, Olivero-Verbel J, Díez S. 2015. Phytoremediation of Mercury-contaminated Soils by Jatropha Curcas. Chemosphere. 127:58–63. doi: 10.1016/j.chemosphere.2014.12.073.
  • Marrugo-Negrete J, Marrugo-Madrid S, Pinedo-Hernández J, Durango-Hernández J, Díez S. 2016. Screening of native plant species for phytoremediation potential at a Hg-contaminated mining site. Sci Total Environ. 542(Pt A):809–816. doi: 10.1016/j.scitotenv.2015.10.117.
  • Massaro L, de Theije M. 2018. Understanding small-scale gold mining practices: an anthropological study on technological innovation in the Vale Do Rio Peixoto (Mato Grosso, Brazil). J Cleaner Product. 204(December):618–635. doi: 10.1016/j.jclepro.2018.08.153.
  • Mondal NK, Das C, Datta JK. 2015. Effect of mercury on seedling growth, nodulation and ultrastructural deformation of Vigna Radiata (L) Wilczek. Environ Monit Assess. 187(5):241. doi: 10.1007/S10661-015-4484-8.
  • Montero-Palmero MB, Martín-Barranco A, Escobar C, Hernández LE. 2014. Early transcriptional responses to mercury: a role for ethylene in mercury-induced stress. New Phytol. 201(1):116–130. doi: 10.1111/nph.12486.
  • Moraes AP, Guerra M. 2010. Cytological differentiation between the two subgenomes of the tetraploid Emilia Fosbergii nicolson and its relationship with E. Sonchifolia (L.) DC. (Asteraceae). Plant Syst Evol. 287(3–4):113–118. doi: 10.1007/s00606-010-0302-5.
  • Moreira HJDC, Bragança HBN. 2011. Manual De Identificação de Plantas Infestantes – Hortifruti. Campinas (SP): Emater e FMC.
  • Mudgal V, Raninga M, Patel D, Ankoliya D, Mudgal A. 2023. A review on phytoremediation: sustainable method for removal of heavy metals. Mater Today: Proc. 77:201–208. doi: 10.1016/j.matpr.2022.11.261.
  • Mukhopadhyay S, Rana V, Kumar A, Kumar Maiti S. 2017. Biodiversity variability and metal accumulation strategies in plants spontaneously inhibiting fly ash Lagoon, India. Environ Sci Pollut Res Int. 24(29):22990–23005. doi: 10.1007/s11356-017-9930-4.
  • Napoli M, Cecchi S, Grassi C, Baldi A, Zanchi CA, Orlandini S. 2019. Phytoextraction of copper from a contaminated soil using arable and vegetable crops. Chemosphere. 219:122–129. Elsevier Ltd doi: 10.1016/j.chemosphere.2018.12.017.
  • Natasha MS, Khalid S, Bibi I, Bundschuh J, Khan Niazi N, Dumat C. 2020. A critical review of mercury speciation, bioavailability, toxicity and detoxification in soil-plant environment: ecotoxicology and health risk assessment. Sci Total Environ711 (April). Elsevier:134749. doi: 10.1016/J.SCITOTENV.2019.134749.
  • Neto AP, Costa LC, Kikuchi AN, Furtado DM, Araujo MQ, Melo MC. 2012. Method validation for the determination of total mercury in fish muscle by cold vapour atomic absorption spectrometry. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 29(4):617–624.). doi: 10.1080/19440049.2011.642009.
  • Nguyen TQ, Sesin V, Kisiala A, Neil Emery RJ. 2021. Phytohormonal roles in plant responses to heavy metal stress: implications for using macrophytes in phytoremediation of aquatic ecosystems. Environ Toxicol Chem. 40(1):7–22. doi: 10.1002/etc.4909.
  • Patek-Mohd NN, Abdu A, Jusop S, Abdul-Hamid H, Karim MR, Nazrin M, Akbar MH, Jamaluddin AS. 2018. Potentiality of melastoma malabathricum as phytoremediators of soil with sewage sludge. Sci. Agric. 75(1):27–35. doi: 10.1590/1678-992x-2016-0002.
  • Pidlisnyuk V, Mamirova A, Pranaw K, Shapoval PY, Trögl J, Nurzhanova A. 2020. Potential Role of Plant growth-promoting bacteria in Miscanthus x Giganteus phytotechnology applied to the trace elements contaminated soils. Int Biodeteriorat Biodegradat. 155:105103. doi: 10.1016/j.ibiod.2020.105103.
  • Prabhu SG, Srinikethan G, Hegde S. 2018. Surface treated Pteris Vittata L. Pinnae powder used as an efficient biosorbent of Pb(II), Cd(II), and Cr(VI) from aqueous solution. Int J Phytoremediation. 20(9):947–956. doi: 10.1080/15226514.2018.1448365.
  • Qian X, Wu Y, Zhou H, Xu X, Xu Z, Shang L, Qiu G. 2018. Total mercury and methylmercury accumulation in wild plants grown at wastelands composed of mine tailings: insights into potential candidates for phytoremediation. Environ Pollut. 239(August):757–767. doi: 10.1016/J.ENVPOL.2018.04.105.
  • Raj D, Kumar A, Kumar Maiti S. 2020. Mercury remediation potential of Brassica Juncea (L.) Czern. for clean-up of flyash contaminated sites. Chemosphere. 248:125857. doi: 10.1016/j.chemosphere.2020.125857.
  • Rani L, Lal Srivastav A, Kaushal J. 2021. Bioremediation: an effective approach of mercury removal from the aqueous solutions. Chemosphere. 280:130654. doi: 10.1016/j.chemosphere.2021.130654.
  • Ranieri E, Moustakas K, Barbafieri M, Ranieri AC, Herrera-Melián JA, Petrella A, Tommasi F. 2020. Phytoextraction technologies for mercury- and chromium-contaminated soil: a review. J of Chemical Tech & Biotech. 95(2):317–327. doi: 10.1002/jctb.6008.
  • Saba M, Falandysz J, Nnorom IC. 2016. Evaluation of vulnerability of suillus variegatus and suillus granulatus mushrooms to sequester mercury in fruiting bodies. J Environ Sci Health B. 51(8):540–545. doi: 10.1080/03601234.2016.1170552.
  • Sahito ZA, Zehra A, Tang L, Ali Z, Hashmi MLuR, Bano N, Ullah MA, He Z, Yang X. 2021. Arsenic and mercury uptake and accumulation in oilseed sunflower accessions selected to mitigate co-contaminated soil coupled with oil and bioenergy production. J Cleaner Product. 291:125226. doi: 10.1016/j.jclepro.2020.125226.
  • Santa-Rios A, Barst BD, Tejeda-Benitez L, Palacios-Torres Y, BauMGartner J, Basu N. 2021. Dried blood spots to characterize mercury speciation and exposure in a colombian artisanal and small-scale gold mining community. Chemosphere. 266:129001. doi: 10.1016/j.chemosphere.2020.129001.
  • Sarwar N, Imran M, Rashid Shaheen M, Ishaque W, Kamran MA, Matloob A, Rehim A, Hussain S. 2017. Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere. 171:710–721. Elsevier Ltd doi: 10.1016/j.chemosphere.2016.12.116.
  • Shakeel A, Ahmad Khan A, Hakeem KR. 2020. Growth, biochemical, and antioxidant response of beetroot (Beta Vulgaris L.) grown in fly ash-amended soil. SN Appl Sci. 2(8):1–9. doi: 10.1007/s42452-020-3191-4.
  • Singh A, Prasad SM, Singh S, Singh M. 2016. Phytoremediation potential of weed plants’ oxidative biomarker and antioxidant responses. Chem Ecol. 32(7):684–706. doi: 10.1080/02757540.2016.1182994.
  • Smith JD, Dubois T, Mallogo R, Fred Njau E, Tua S, Srinivasan R. 2018. Host range of the invasive tomato Pest Tuta Absoluta Meyrick (Lepidoptera: Gelechiidae) on solanaceous crops and weeds in Tanzania. Florida Entomologist. 101(4):573–579. doi: 10.1653/024.101.0417.
  • Souza-Filho PWM, de Lucia Lobo F, Barbosa Lopes Cavalcante R, Mota JA, da Rocha Nascimento W, Santos DC, M. L. M. Novo E, Barbosa CCF, Siqueira JO. 2021. Land-use intensity of official mineral extraction in the amazon region: linking economic and spatial data. Land Degrad Dev. 32(4):1706–1717. doi: 10.1002/ldr.3810.
  • Souza APd, da Mota LL, Zamadei T, Martim CC, Almeida FTd, Paulino J. 2013. Classificação Climática e Balanço Hídrico Climatológico No Estado de Mato Grosso. Nativa. 1(1):34–43. doi: 10.31413/NATIVA.V1I1.1334.
  • Sytar O, Ghosh S, Malinska H, Zivcak M, Brestic M. 2021. Physiological and molecular mechanisms of metal accumulation in hyperaccumulator plants. Physiol Plant. 173(1):148–166. doi: 10.1111/PPL.13285.
  • Tangahu BV, Sheikh Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M. 2011. A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng. 2011:1–31. doi: 10.1155/2011/939161.
  • Tiodar ED, Văcar CL, Podar D. 2021. Phytoremediation and microorganisms-assisted phytoremediation of mercury-contaminated soils: challenges and perspectives. Int J Environ Res Public Health. 18(5):2435. doi: 10.3390/ijerph18052435.
  • Vaverková MD, Adamcová D. 2014. Heavy metals uptake by select plant speciesin the landfill area of Štěpánovice, Czech Republic. Pol J Environ Stud. 23(6):2265–2269. doi: 10.15244/pjoes/26106.
  • Wang J, Feng X, Anderson CW, Xing Y, Shang L. 2012. Remediation of mercury contaminated sites – a review. J Hazard Mater. 221-222:1–18. Elsevier BV doi: 10.1016/j.jhazmat.2012.04.035.
  • Wang L, Hou D, Cao Y, Ok YS, Tack FMG, Rinklebe J, O’Connor D. 2020. Remediation of mercury contaminated soil, water, and air: a review of emerging materials and innovative technologies. Environ Int. 134(January):105281. doi: 10.1016/J.ENVINT.2019.105281.
  • Wu X, Cobbina SJ, Mao G, Xu H, Zhang Z, Yang L. 2016. A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environ Sci Pollut Res Int. 23(9):8244–8259. doi: 10.1007/s11356-016-6333-x.
  • Xu S, Zhao Q, Qin C, Qin M, Lee J, Li C, Li Y, Yang J. 2021. Effects of vegetation restoration on accumulation and translocation of heavy metals in post-mining areas. Land Degrad Dev. 32(5):2000–2012. doi: 10.1002/ldr.3861.
  • Xu W, Park SK, Gruninger SE, Charles S, Franzblau A, Basu N, Goodrich JM. 2023. Associations between mercury exposure with blood pressure and lipid levels: a cross-sectional study of dental professionals. Environ Res. 220:115229. doi: 10.1016/j.envres.2023.115229.
  • Xun Y, Feng L, Li Y, Dong H. 2017. Mercury accumulation plant cyrtomium macrophyllum and its potential for phytoremediation of mercury polluted sites. Chemosphere. 189:161–170. doi: 10.1016/j.chemosphere.2017.09.055.
  • Yamashita OM, Guimarães SC, Silva JL, Carvalho MA, Camargo MF. 2009. Effect of environmental factors on germination of emilia sonchifolia seeds. Planta Daninha. 27(4):673–681. doi: 10.1590/S0100-83582009000400005.
  • Yan A, Wang Y, Tan SN, Mohd Yusof ML, Ghosh S, Chen Z. 2020. Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Front Plant Sci. 11(April):359. doi: 10.3389/fpls.2020.00359.
  • Yang Y, Y, Liang X, Han Tsan Y, Chiu A, Ghosh H, Chen, M, Tang. 2016. The roles of Arbuscular Mycorrhizal Fungi (AMF) in phytoremediation and tree-herb interactions in Pb contaminated soil. Sci Rep. 2016 6:1 6(1):20469. Nature Publishing Group doi: 10.1038/srep20469.
  • Zhang Y, Liu GJ. 2019. Uptake, accumulation and phytoextraction efficiency of cesium in Gypsophila Paniculata. Int J Phytoremediation. 21(13):1290–1295.). doi: 10.1080/15226514.2019.1566878.
  • Zhao R, Cao X, Li X, Li T, Zhang H, Cui X, Cui Z. 2023. Ecological toxicity of Cd, Pb, Zn, Hg and regulation mechanism in Solanum Nigrum L. Chemosphere. 313(February):137447. doi: 10.1016/J.CHEMOSPHERE.2022.137447.
  • Zhao X, Joo JC, Kim JY. 2021. Evaluation of heavy metal phytotoxicity to Helianthus Annuus L. using seedling vigor index-soil model. Chemosphere. 275:130026. doi: 10.1016/j.chemosphere.2021.130026.
  • Zornoza P, Millán R, Sierra MJ, Seco A, Esteban E. 2010. Efficiency of White Lupin in the removal of mercury from contaminated soils: soil and hydroponic experiments. J Environ Sci. 22(3):421–427. doi: 10.1016/S1001-0742(09)60124-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.