90
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Glomus versiforme and intercropping with Sphagneticola calendulacea decrease Cd accumulation in maize

, , &

References

  • Bovet L, Eggmann T, Meylan-Bettex M, Polier J, Kammer P, Marin E, Feller U, Martinoia E. 2003. Transcript levels of AtMRPs after cadmium treatment: induction of AtMRP3. Plant Cell & Environment. 26(3):371–381. doi: 10.1046/j.1365-3040.2003.00968.x.
  • Brunetti P, Zanella L, De Paolis A, Di Litta D, Cecchetti V, Falasca G, Barbieri M, Altamura MM, Costantino P, Cardarelli M. 2015. Cadmium-inducible expression of the ABC-type transporter AtABCC3 increases phytochelatin-mediated cadmium tolerance in Arabidopsis. J Exp Bot. 66(13):3815–3829. doi: 10.1093/jxb/erv185.
  • Cailliatte R, Lapeyre B, Briat JF, Mari S, Curie C. 2009. The NRAMP6 metal transporter contributes to cadmium toxicity. Biochem J. 422(2):217–228. doi: 10.1042/BJ20090655.
  • Cao XR, Luo JP, Wang XZ, Chen ZQ, Liu GQ, Khan MB, Kang KJ, Feng Y, He ZL, Yang XE. 2020. Responses of soil bacterial community and Cd phytoextraction to a Sedum alfredii-oilseed rape (Brassica napus L. and Brassica juncea L.) intercropping system. Sci Total Environ. 723:138152. doi: 10.1016/j.scitotenv.2020.138152.
  • Cao YH, Zhao XW, Liu YJ, Wang YL, Wu WM, Jiang YW, Liao CJ, Xu XX, Gao SB, Shen YO, et al. 2019. Genome-wide identification of ZmHMAs and association of natural variation in ZmHMA2 and ZmHMA3 with leaf cadmium accumulation in maize. PeerJ. 7:e7877. doi: 10.7717/peerj.7877.
  • Chang JD, Huang S, Yamaji N, Zhang WW, Ma JF, Zhao FJ. 2020. OsNRAMP1 contributes to cadmium and manganese uptake in rice. Plant Cell Environ. 43(10):2476–2491. doi: 10.1111/pce.13843.
  • Chen XW, Wu L, Luo N, Hui C, Wong MH, Li H. 2019b. Arbuscular mycorrhizal fungi and the associated bacterial community influence the uptake of cadmium in rice. Geoderma. 337:749–757. doi: 10.1016/j.geoderma.2018.10.029.
  • Chen JG, Zou WL, Meng LJ, Fan XR, Xu GH, Ye GY. 2019a. Advances in the uptake and transport mechanisms and QTLs mapping of cadmium in rice. Int J Mol Sci. 20(14):3417. doi: 10.3390/ijms20143417.
  • Garcia O, Bouige P, Forestier C, Dassa E. 2004. Inventory and comparative analysis of rice and Arabidopsis ATP-binding cassette (ABC) systems. J Mol Biol. 343(1):249–265. doi: 10.1016/j.jmb.2004.07.093.
  • González-Chávez MC, Carrillo-González R, Wright SF, Nichols KA. 2004. The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut. 130(3):317–323. doi: 10.1016/j.envpol.2004.01.004.
  • Guo F, van Ittersum MK, Wang G, van der Putten PEL, van der Werf W. 2016. Yield and yield components of wheat and maize in wheat-maize intercropping in the Netherlands. Eur J Agron. 76:17–27. doi: 10.1016/j.eja.2016.01.005.
  • He HD, Ye ZH, Yang DJ, Yan JL, Xiao L, Zhong T, Yuan M, Cai XD, Fang ZQ, Jing YX. 2013. Characterization of endophytic Rahnella sp. JN6 from Polygonum pubescens and its potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Chemosphere. 90(6):1960–1965. doi: 10.1016/j.chemosphere.2012.10.057.
  • Heath RL, Packer L. 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys. 125(1):189–198. doi: 10.1016/0003-9861(68)90654-1.
  • Huang X, Duan SP, Wu Q, Yu M, Shabala S. 2020. Reducing cadmium accumulation in plants: structure-function relations and tissue-specific operation of transporters in the spotlight. Plants (Basel). 9(2):223. doi: 10.3390/plants9020223.
  • Huang XC, Ho SH, Zhu SS, Ma F, Wu JT, Yang JX, Wang L. 2017. Adaptive response of arbuscular mycorrhizal symbiosis to accumulation of elements and translocation in Phragmites australis affected by cadmium stress. J Environ Manage. 197:448–455. doi: 10.1016/j.jenvman.2017.04.014.
  • Huang YX, Liao BH, Xiao LT, Liu SC, Wang ZK. 2006. Effects of Cd2+ on seedling growth and phytohormone contents of Glycine max. J Environ Sci. 27:1398–1401.
  • Huang CD, Liu QQ, Li HP, Li XL, Zhang CC, Zhang FS. 2018a. Optimised sowing date enhances crop resilience towards size-asymmetric competition and reduces the yield difference between intercropped and sole maize. Field Crops Res. 217:125–133. doi: 10.1016/j.fcr.2017.12.010.
  • Huang XC, Wang L, Zhu SS, Ho SH, Wu JT, Kalita PK, Ma F. 2018b. Unraveling the effect of arbuscular mycorrhizal fungus on uptake, translocation and distribution of cadmium in Phragmites australis (Cav.) Trin. ex Steud. Ecotoxicol Environ Saf. 149:43–50. doi: 10.1016/j.ecoenv.2017.11.011.
  • Hu JL, Chan PT, Wu FY, Wu SC, Zhang JH, Lin XG, Wong MH. 2013. Arbuscular mycorrhizal fungi induce differential Cd and P acquisition by Alfred stonecrop (Sedum alfredii Hance) and upland kangkong (Ipomoea aquatica Forsk.) in an intercropping system. Appl Soil Ecol. 63:29–35. doi: 10.1016/j.apsoil.2012.09.002.
  • Hu ZH, Zhuo F, Jing SH, Li X, Yan TX, Lei LL, Lu RR, Zhang XF, Jing YX. 2019. Combined application of arbuscular mycorrhizal fungi and steel slag improves plant growth and reduces Cd, Pb accumulation in Zea mays. Int J Phytoremediation. 21(9):857–865. doi: 10.1080/15226514.2019.1577355.
  • Ishimaru Y, Takahashi R, Bashir K, Shimo H, Senoura T, Sugimoto K, Ono K, Yano M, Ishikawa S, Arao T, et al. 2012. Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport. Sci Rep. 2(1):286. doi: 10.1038/srep00286.
  • Jiang QY, Tan SY, Zhuo F, Yang DJ, Ye ZH, Jing YX. 2016a. Effect of Funneliformis mosseae on the growth, cadmium accumulation and antioxidant activities of Solanum nigrum. Appl Soil Ecol. 98:112–120. doi: 10.1016/j.apsoil.2015.10.003.
  • Jiang QY, Zhuo F, Long SH, Zhao HD, Yang DJ, Ye ZH, Li SS, Jing YX. 2016b. Can arbuscular mycorrhizal fungi reduce Cd uptake and alleviate Cd toxicity of Lonicera japonica grown in Cd-added soils? Sci Rep. 6(1):21805. doi: 10.1038/srep21805.
  • Jin TT, Chen JT, Zhu LY, Zhao YF, Guo JJ, Huang YQ. 2015. Comparative mapping combined with homology-based cloning of the rice genome reveals candidate genes for grain zinc and iron concentration in maize. BMC Genet. 16:17. doi: 10.1186/s12863-015-0176-1.
  • Jing YX, Yan JL, He HD, Yang DJ, Xiao L, Zhong T, Yuan M, Cai XD, Li SB. 2014. Characterization of bacteria in the rhizosphere soils of polygonum pubescens and their potential in promoting growth and Cd, Pb, Zn uptake by brassica napus. Int J Phytoremediation. 16(4):321–333. doi: 10.1080/15226514.2013.773283.
  • Jo SG, Kang YI, Om KS, Cha YH, Ri SY. 2022. Growth, photosynthesis and yield of soybean in ridge-furrow intercropping system of soybean and flax. Field Crops Res. 275:108329. doi: 10.1016/j.fcr.2021.108329.
  • Krishna TPA, Maharajan T, Roch GV, Ignacimuthu S, Ceasar SA. 2020. Structure, function, regulation and phylogenetic relationship of ZIP family transporters of plants. Front Plant Sci. 11:662. doi: 10.3389/fpls.2020.00662.
  • Latef AAHA, Hashem A, Rasool S, Abd Allah EF, Alqarawi AA, Egamberdieva D, Jan S, Anjum NA, Ahmad P. 2016. Arbuscular mycorrhizal symbiosis and abiotic stress in plants: a review. J Plant Biol. 59(5):407–426. doi: 10.1007/s12374-016-0237-7.
  • Lee S, Jeong HJ, Kim SA, Lee J, Guerinot ML, An G. 2010. OsZIP5 is a plasma membrane zinc transporter in rice. Plant Mol Biol. 73(4–5):507–517. doi: 10.1007/s11103-010-9637-0.
  • Lei LL, Zhu QY, Xu PX, Jing YX. 2021. The intercropping and arbuscular mycorrhizal fungus decrease Cd accumulation in upland rice and improve phytoremediation of Cd-contaminated soil by Sphagneticola calendulacea (L.) Pruski. J Environ Manage. 298:113516. doi: 10.1016/j.jenvman.2021.113516.
  • Li H, Luo N, Zhang LJ, Zhao HM, Li YW, Cai QY, Wong MH, Mo CH. 2016. Do arbuscular mycorrhizal fungi affect cadmium uptake kinetics, subcellular distribution and chemical forms in rice? Sci Total Environ. 571:1183–1190. doi: 10.1016/j.scitotenv.2016.07.124.
  • Lin LJ, Chen FB, Wang J, Liao MA, Lv XL, Wang ZH, Li HX, Deng QX, Xia H, Liang D, et al. 2018. Effects of living hyperaccumulator plants and their straws on the growth and cadmium accumulation of Cyphomandra betacea seedlings. Ecotoxicol Environ Saf. 155:109–116. doi: 10.1016/j.ecoenv.2018.02.072.
  • Lin L, Liao M, Mei L, Cheng J, Liu J, Luo L, Liu Y. 2014. Two ecotypes of hyperaccumulators and accumulators affect cadmium accumulation in cherry seedlings by intercropping. Env Prog Sustain Energy. 33(4):1251–1257. doi: 10.1002/ep.11924.
  • Liu XS, Feng SJ, Zhang BQ, Wang MQ, Cao HW, Rono JK, Chen X, Yang ZM. 2019. OsZIP1 functions as a metal efflux transporter limiting excess zinc, copper and cadmium accumulation in rice. BMC Plant Biol. 19(1):283. doi: 10.1186/s12870-019-1899-3.
  • Liu SK, Li Q, Liu ZJ. 2013. Genome-wide identification, characterization and phylogenetic analysis of 50 catfish ATP-binding cassette (ABC) transporter genes. PLoS One. 8(5):e63895. doi: 10.1371/journal.pone.0063895.
  • Liu X, Rahman T, Song C, Yang F, Su BY, Cui L, Bu WZ, Yang WY. 2018. Relationships among light distribution, radiation use efficiency and land equivalent ratio in maize-soybean strip intercropping. Field Crops Res. 224:91–101. doi: 10.1016/j.fcr.2018.05.010.
  • Liu H, Yuan M, Tan SY, Yang XP, Lan Z, Jiang QY, Ye ZH, Jing YX. 2015. Enhancement of arbuscular mycorrhizal fungus (Glomus versiforme) on the growth and Cd uptake by Cd-hyperaccumulator Solanum nigrum. Appl Soil Ecol. 89:44–49. doi: 10.1016/j.apsoil.2015.01.006.
  • Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using Real-Time quantitative PCR and the 2−ΔΔCT method. Methods. 25(4):402–408. doi: 10.1006/meth.2001.1262.
  • Li SZ, Zhou XJ, Huang YQ, Zhu LY, Zhang SJ, Zhao YF, Guo JJ, Chen JT, Chen RM. 2013. Identification and characterization of the zinc-regulated transporters, iron-regulated transporter-like protein (ZIP) gene family in maize. BMC Plant Biol. 13(1):114. doi: 10.1186/1471-2229-13-114.
  • Lu RR, Hu ZH, Zhang QL, Li YQ, Lin M, Wang XL, Wu XN, Yang JT, Zhang LQ, Jing YX, et al. 2020. The effect of Funneliformis mosseae on the plant growth, Cd translocation and accumulation in the new Cd-hyperaccumulator Sphagneticola calendulacea. Ecotoxicol Environ Saf. 203:110988. doi: 10.1016/j.ecoenv.2020.110988.
  • Lu QY, Li JH, Chen FB, Liao MA, Lin LJ, Tang Y, Liang D, Xia H, Lai YS, Wang X, et al. 2017. Effects of mutual intercropping on the cadmium accumulation in accumulator plants Stellaria media, Malachium aquticum, and Galium aparine. Environ Monit Assess. 189(12):622. doi: 10.1007/s10661-017-6322-7.
  • Luo J, He WX, Rinklebe J, Igalavithana AD, Tack FMG, Ok YS. 2019. Distribution characteristics of Cd in different types of leaves of Festuca arundinacea intercropped with Cicer arietinum L.: a new strategy to remove pollutants by harvesting senescent and dead leaves. Environ Res. 179(Pt A):108801. doi: 10.1016/j.envres.2019.108801.
  • Maitra P, Zheng Y, Wang Y-L, Mandal D, Lü P-P, Gao C, Babalola BJ, Ji N-N, Li X-C, Guo L-D. 2021. Phosphorus fertilization rather than nitrogen fertilization, growing season and plant successional stage structures arbuscular mycorrhizal fungal community in a subtropical forest. Biol Fertil Soils. 57(5):685–697. doi: 10.1007/s00374-021-01554-4.
  • Meier S, Cornejo P, Cartes P, Borie F, Medina J, Azcón R. 2015. Interactive effect between Cu-adapted arbuscular mycorrhizal fungi and biotreated agrowaste residue to improve the nutritional status of Oenothera picensis growing in Cu-polluted soils. J Plant Nutr Soil Sci. 178(1):126–135. doi: 10.1002/jpln.201400092.
  • Metwally RA, Soliman SA, Latef AAHA, Abdelhameed RE. 2021. The individual and interactive role of arbuscular mycorrhizal fungi and trichoderma viride on growth, protein content, amino acids fractionation, and phosphatases enzyme activities of onion plants amended with fish waste. Ecotoxicol Environ Saf. 214:112072. doi: 10.1016/j.ecoenv.2021.112072.
  • Migeon A, Blaudez D, Wilkins O, Montanini B, Campbell MM, Richaud P, Thomine S, Chalot M. 2010. Genome-wide analysis of plant metal transporters, with an emphasis on poplar. Cell Mol Life Sci. 67(22):3763–3784. doi: 10.1007/s00018-010-0445-0.
  • Milner MJ, Seamon J, Craft E, Kochian LV. 2013. Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. J Exp Bot. 64(1):369–381. doi: 10.1093/jxb/ers315.
  • Ouziad F, Hildebrandt U, Schmelzer E, Bothe H. 2005. Differential gene expressions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress. J Plant Physiol. 162(6):634–649. doi: 10.1016/j.jplph.2004.09.014.
  • Pang KY, Li YJ, Liu MH, Meng ZD, Yu YL. 2013. Inventory and general analysis of the ATP-binding cassette (ABC) gene superfamily in maize (Zea mays L.). Gene. 526(2):411–428. doi: 10.1016/j.gene.2013.05.051.
  • Pedersen CNS, Axelsen KB, Harper JF, Palmgren MG. 2012. Evolution of plant P-type ATPases. Front Plant Sci. 3:31. doi: 10.3389/fpls.2012.00031.
  • Qiao K, Gong L, Tian YB, Wang H, Chai TY. 2018. The metal-binding domain of wheat heavy metal ATPase2 (TaHMA2) is involved in zinc/cadmium tolerance and translocation in Arabidopsis. Plant Cell Rep. 37(9):1343–1352. doi: 10.1007/s00299-018-2316-3.
  • Saha MR, Hasan SMR, Akter R, Hossain MM, Alam MS, Alam MA, Mazumder MEH. 1970. In vitro free radical scavenging activity of methanol extract of the leaves of Mimusops elengi Linn. Bangl J Vet Med. 6(2):197–202. doi: 10.3329/bjvm.v6i2.2336.
  • Sharma A, Chauhan RS. 2008. Identification of candidate gene-based markers (SNPs and SSRs) in the zinc and iron transporter sequences of maize (Zea mays L.). Curr Sci. 95:1051–1059.
  • Song W-Y, Park J, Mendoza-Cózatl DG, Suter-Grotemeyer M, Shim D, Hörtensteiner S, Geisler M, Weder B, Rea PA, Rentsch D, et al. 2010. Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Natl Acad Sci U S A. 107(49):21187–21192. doi: 10.1073/pnas.1013964107.
  • Sun H, Xie YX, Zheng YL, Lin YL, Yang FY. 2018. The enhancement by arbuscular mycorrhizal fungi of the Cd remediation ability and bioenergy quality-related factors of five switchgrass cultivars in Cd-contaminated soil. PeerJ. 6:e4425. doi: 10.7717/peerj.442.
  • Sun LN, Zhang XH, Ouyang WK, Yang ED, Cao YY, Sun RB. 2022. Lowered Cd toxicity, uptake and expression of metal transporter genes in maize plant by ACC deaminase-producing bacteria Achromobacter sp. J Hazard Mater. 423(Pt A):127036. doi: 10.1016/j.jhazmat.2021.127036.
  • Tan SY, Jiang QY, Zhuo F, Liu H, Wang YT, Li SS, Ye ZH, Jing YX. 2015. Effect of inoculation with Glomus versiforme on cadmium accumulation, antioxidant activities and phytochelatins of Solanum photeinocarpum. PLoS One. 10(7):e0132347. doi: 10.1371/journal.pone.0132347.
  • Tang Y, He J, Yu XN, Xie YD, Lin LJ, Sun GC, Li HX, Liao MA, Liang D, Xia H, et al. 2017. Intercropping with Solanum nigrum and Solanum photeinocarpum from two ecoclimatic regions promotes growth and reduces cadmium uptake of eggplant seedlings. Pedosphere. 27(3):638–644. doi: 10.1016/S1002-0160(17)60358-8.
  • Tiwari M, Sharma D, Dwivedi S, Singh M, Tripathi RD, Trivedi PK. 2014. Expression in Arabidopsis and cellular localization reveal involvement of rice NRAMP, OsNRAMP1, in arsenic transport and tolerance. Plant Cell Environ. 37(1):140–152. doi: 10.1111/pce.12138.
  • Vandermeer J, van Noordwijk M, Anderson J, Ong C, Perfecto I. 1998. Global change and multi-species agroecosystems: concepts and issues. Agr Ecosyst Environ. 67(1):1–22. doi: 10.1016/S0167-8809(97)00150-3.
  • Verrier PJ, Bird D, Burla B, Dassa E, Forestier C, Geisler M, Klein M, Kolukisaoglu U, Lee Y, Martinoia E, et al. 2008. Plant ABC proteins–a unified nomenclature and updated inventory. Trends Plant Sci. 13(4):151–159. doi: 10.1016/j.tplants.2008.02.001.
  • Wan YA, Wang K, Liu Z, Yu Y, Wang Q, Li HF. 2019. Effect of selenium on the subcellular distribution of cadmium and oxidative stress induced by cadmium in rice (Oryza sativa L.). Environ Sci Pollut Res Int. 26(16):16220–16228. doi: 10.1007/s11356-019-04975-9.
  • Wang MY, Wu CN, Cheng ZH, Meng HW. 2015. Growth and physiological changes in continuously cropped eggplant (Solanum melongena L.) upon relay intercropping with garlic (Allium sativum L.). Front Plant Sci. 6:262. doi: 10.3389/fpls.2015.00262.
  • Wu JT, Wang L, Zhao L, Huang XC, Ma F. 2020. Arbuscular mycorrhizal fungi effect growth and photosynthesis of Phragmites australis (Cav.) Trin ex. Steudel under copper stress. Plant Biol (Stuttg). 22(1):62–69. doi: 10.1111/plb.13039.
  • Xiang HM, Lan N, Wang FG, Zhao BL, Wei H, Zhang JE. 2023. An effective planting model to decrease cadmium accumulation in rice grains and plants: intercropping rice with wetland plants. Pedosphere. 33(2):355–364. doi: 10.1016/j.pedsph.2022.06.054.
  • Xin JP, Zhao C, Li Y, Ma SS, Tian RN. 2022. Transcriptional, secondary metabolic, and antioxidative investigations elucidate the rapid response mechanism of Pontederia cordata to cadmium. Ecotoxicol Environ Saf. 232:113236. doi: 10.1016/j.ecoenv.2022.113236.
  • Xu JJ, Liu NN, Qin L, Wang JX, You GZ. 2016. Effects of Cd stress on antioxidant enzymes activity of Sonchus asper L. Hil. and Zea mays L. in intercropping system. J Yunn Agr. 31:348–355. doi: 10.16211/j.issn.1004-390X(n).2016.02.024.
  • Yang YR, Han XZ, Liang Y, Ghosh A, Chen J, Tang M. 2015. The combined effects of arbuscular mycorrhizal fungi (AMF) and lead (Pb) stress on Pb accumulation, plant growth parameters, photosynthesis, and antioxidant enzymes in Robinia pseudoacacia L. PLoS One. 10(12):e0145726. doi: 10.1371/journal.pone.0145726.
  • Yang X, Qin JH, Li JC, Lai ZA, Li HS. 2020. Upland rice intercropping with Solanum nigrum inoculated with arbuscular mycorrhizal fungi reduces grain Cd while promoting phytoremediation of Cd-contaminated soil. J Hazard Mater. 406:124325. doi: 10.1016/j.jhazmat.2020.124325.
  • Yang B, Shu WS, Ye ZH, Lan CY, Wong MH. 2003. Growth and metal accumulation in vetiver and two Sesbania species on lead/zinc mine tailings. Chemosphere. 52(9):1593–1600. doi: 10.1016/S0045-6535(03)00499-5.
  • Yazici MA, Asif M, Tutus Y, Ortas I, Ozturk L, Lambers H, Cakmak I. 2021. Reduced root mycorrhizal colonization as affected by phosphorus fertilization is responsible for high cadmium accumulation in wheat. Plant Soil. 468(1–2):19–35. doi: 10.1007/s11104-021-05041-5.
  • Yeh YH, Tsai CC, Chen TW, Lee CH, Chang WJ, Hsieh MY, Li TK. 2022. Activation of multiple proteolysis systems contributes to acute cadmium cytotoxicity. Mol Cell Biochem. 477(3):927–937. doi: 10.1007/s11010-021-04298-9.
  • Yuan M, He HD, Xiao L, Zhong T, Liu H, Li SB, Deng PY, Ye ZH, Jing YX. 2014. Enhancement of Cd phytoextraction by two Amaranthus species with endophytic Rahnella sp. JN27. Chemosphere. 103:99–104. doi: 10.1016/j.chemosphere.2013.11.040.
  • Zhan FD, Li B, Jiang M, Yue XR, He YM, Xia YS, Wang YS. 2018. Arbuscular mycorrhizal fungi enhance antioxidant defense in the leaves and the retention of heavy metals in the roots of maize. Environ Sci Pollut Res Int. 25(24):24338–24347. doi: 10.1007/s11356-018-2487-z.
  • Zhang XF, Hu ZH, Yan TX, Lu RR, Peng CL, Li SS, Jing YX. 2019b. Arbuscular mycorrhizal fungi alleviate Cd phytotoxicity by altering Cd subcellular distribution and chemical forms in Zea mays. Ecotoxicol Environ Saf. 171:352–360. doi: 10.1016/j.ecoenv.2018.12.097.
  • Zhang XH, Lang DY, Zhang EH, Zhang YJ. 2015. Effect of intercropping of Angelica sinensis with Garlic on its growth and rhizosphere microflora. IJAB. 17(3):554–560. doi: 10.17957/IJAB/17.3.13.1065.
  • Zhang FG, Liu MH, Li Y, Che YY, Xiao Y. 2019a. Effects of arbuscular mycorrhizal fungi, biochar and cadmium on the yield and element uptake of Medicago sativa. Sci Total Environ. 655:1150–1158. doi: 10.1016/j.scitotenv.2018.11.317.
  • Zhang HH, Xu N, Li X, Long JH, Sui X, Wu YN, Li JB, Wang JF, Zhong HX, Sun GY. 2018. Arbuscular mycorrhizal fungi (Glomus mosseae) improves growth, photosynthesis and protects Photosystem II in leaves of Lolium perenne L. in cadmium contaminated soil. Front Plant Sci. 9:1156. doi: 10.3389/fpls.2018.01156.
  • Zhuo F, Zhang XF, Lei LL, Yan TX, Lu RR, Hu ZH, Jing YX. 2020. The effect of arbuscular mycorrhizal fungi and biochar on the growth and Cd/Pb accumulation in Zea mays. Int J Phytoremediation. 22(10):1009–1018. doi: 10.1080/15226514.2020.1725867.
  • Ziane H, Hamza N, Meddad-Hamza A. 2021. Arbuscular mycorrhizal fungi and fertilization rates optimize tomato (Solanum lycopersicum L.) growth and yield in a Mediterranean agroecosystem. J Saudi Society Agric Sci. 20(7):454–458. doi: 10.1016/j.jssas.2021.05.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.