113
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Phytoremediation ability and selected genetic transcription in Hydrocotyle umbellata-under cadmium stress

, , , , , , , & show all

References

  • Agnihotri A, Seth CS. 2019. Does jasmonic acid regulate photosynthesis, clastogenecity, and phytochelatins in Brassica juncea L. in response to Pb-subcellular distribution? Chemosphere. 243:125361. doi: 10.1016/j.chemosphere.2019.125361.
  • Alaboudi AK, Ahmed B, Brodie G. 2018. Phytoremediation of Pb and Cd contaminated soils by using sunflower (Helianthus annus) plant. Ann Agric Sci. 63(1):123–127. doi: 10.1016/j.aoas.2018.05.007.
  • Ali KA, Noraldeen SS, Yaseen AA. 2021. An evaluation study for chlorophyll estimation techniques. Sarhad J Agric. 37(4):1458–1465. doi: 10.17582/journal.sja/2021/37.4.1458.1465.
  • Bernard F, Dumez S, Lemière S, Platel A, Nesslany F, Deram A, Vandenbulcke F, Cuny D. 2021. Impact of cadmium on forage kale (Brassica oleracea var. viridis cv “Prover”) after 3-,10- and 56-day exposure to a Cd-spiked field soil. Environ Sci Pollut Res Int. 28(20):25060–25068. doi: 10.1007/s11356-018-1636-8.
  • Bokhari HS, Nawaz G, Azizullah A, Hassan MM, Ali Z. 2022. Heavy metals phytofiltration potential of Hydrocotyle umbellata from Nullah Lai wastewater and its environmental risk. Int J Phytoremediation. 21(1):1–8.
  • Campbell R, Plank CO. 1998. Preparation of plant tissues for laboratory analysis. In: Kalra YP, editor. Handbook of reference methods for plant analysis. Boca Raton, FI. CRC Press. p. 37–49.
  • Chand J, Kumar P. 2020. Biochemical shift of mustard grown under cadmium contaminated soil. J Pharmacogn Phytochem. 9(3):178–183.
  • Che J, Yamaji N, Shen RF, Ma JF. 2016. An Al-inducible expansin gene, OsEXPA10 is involved in root cell elongation of rice. Plant J. 88(1):132–142. PMID: 27302336. doi: 10.1111/tpj.13237.
  • Chen Y, Han Y, Zhang M, Zhou S, Kong X, Wang W. 2016. Overexpression of the wheat expansin gene TaEXPA2 improved seed production and drought tolerance in transgenic tobacco plants. PLoS ONE. 11(4):e0153494. doi: 10.1371/journal.pone.0153494.
  • Connolly MA, Clausen PA, Lazar JG. 2006. Preparation of RNA from plant tissue using trizol. CSH Protoc. 2006(1):pdb-prot4105. doi: 10.1101/pdb.prot4105.
  • Creissen G, Edwards EA, Enard C, Wellburn A, Mullineaux P. 1992. Molecular characterization of glutathione reductase cDNAs from pea (Pisum sativum L.). Plant J. 2(1):129–131. doi: 10.1111/j.1365-313X.1992.00129.x.
  • Demidchik V, Straltsova D, Medvedev SS, Pozhvanov AG, Sokolik A, Yurin V. 2O14. Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. J Exp Bot. 65(5):1259–1270. doi: 10.1093/jxb/eru004.
  • Doñas AA, García CM, Román B, Gómez P. 2022. Gene expression in zucchini fruit development. Horticulturae. 8(4):306. doi: 10.3390/horticulturae8040306.
  • Erum S, Hina A, Zahid H. 2014. Bioaccumulation of pollutants from textile waste water by Hydrocotyle umbellata L. Int J Biol Biotechnol. 11:245–253.
  • Farid M, Irshad M, Fawad M, Ali Z, Eneji A, Aurangzeb N, Mohammad A, Ali B. 2014. Effect of cyclic phytoremediation with different wetland plants on municipal wastewater. Int J Phytoremediation. 16(6):572–581. doi: 10.1080/15226514.2013.798623.
  • Florentino FI, Nascimento MVM, Galdino PM, De Brito AF, Rocha FF, Tonussi CR, Lima TCM, Paula JR, Costa EA. 2013. Evaluation of analgesic and anti-inflammatory activities of Hydrocotyle umbellata L., Araliaceae in mice. An Acad Bras Cienc. 85(3):987–997. doi: 10.1590/S0001-37652013000300011.
  • Genchi G, Sinicropi MS, Lauria G, Carocci A, Catalano A. 2020. The effects of cadmium toxicity. IJERPH. 17(11):3782. doi: 10.3390/ijerph17113782.
  • Goswami S, Das S. 2015. A study on cadmium phytoremediation potential of Indian mustard, Brassica juncea. Int J Phytoremediation. 17(6):583–588. doi: 10.1080/15226514.2014.935289.
  • Gupta P, Sudhakar S, Seth CS. 2017. 24-Epibrassinolide and Sodium Nitroprusside alleviate the salinity stress in Brassica juncea L. cv. Varuna through cross talk among proline, nitrogen metabolism and abscisic acid. Plant Soil. 411(1-2):483–498. doi: 10.1007/s11104-016-3043-6.
  • Gupta S, Seth CS. 2021. Salicylic acid alleviates chromium (VI) toxicity by restricting its uptake, improving photosynthesis and augmenting antioxidant defense in Solanum lycopersicum L. Physiol Mol Biol Plants. 27(11):2651–2664. doi: 10.1007/s12298-021-01088-x.
  • Haider FU, Liqun C, Coulter JA, Cheema SA, Wu J, Zhang R, Wenjun M, Farooq M. 2021. Cadmium toxicity in plants: impacts and remediation strategies. Ecotoxicol Environ Safe. 211(111887):111887. doi: 10.1016/j.ecoenv.2020.111887.
  • Hamdy AS, El Hefnawy MH, Azzam MS, Aboutabl AE. 2018. Botanical and genetic characterization of Hydrocotyle umbellata L. cultivated in Egypt. Bull Fac Pharm Cairo Univ. 56(1):46–53. doi: 10.1016/j.bfopcu.2018.03.006.
  • He X, Zeng J, Cao F, Ahmed IM, Zhang G, Vincze E, Wu F. 2015. HvEXPB7, a novel β-expansin gene revealed by the root hair transcriptome of Tibetan wild barley, improves root hair growth under drought stress. J Exp Bot. 66(22):7405–7419. doi: 10.1093/jxb/erv436.
  • Hoagland DR, Arnon DI. 1950. The water-culture method for growing plants without soil. Calif Agric Exp Stn Circ. 347:1–32.
  • İncili ÇY, Arslan B, Çelik ENY, Ulu F, Horuz E, Baloglu MC, Çağlıyan E, Burcu G, Bayarslan AU, Altunoglu YC. 2022. Comparative bioinformatics analysis and abiotic stress responses of expansin proteins in cucurbitaceae members: responses of expansin proteins in Cucurbitaceae members: watermelon and melon. Protoplasma. 260(2):509–527. doi: 10.1007/s00709-022-01793-8.
  • Iori V, Pietrini F, Bianconi D, Mughini G, Massacci A, Zacchini M. 2017. Analysis of biometric, physiological, and biochemical traits to evaluate the cadmium phytoremediation ability of eucalypt plants under hydroponics. iForest. 10(2):416–421. doi: 10.3832/ifor2129-009.
  • Jindal A, Seth CS. 2023. Nitric oxide mediated post-translational modifications and its significance in plants under abiotic stress. In: Khan MIR, Iqbal N, Poór P, Ferrante A, editors. Nitric oxide in developing plant stress resilience. Cambridge: Academic Press, Elsevier. p. 233–250. doi: 10.1016/B978-0-323-91209-9.00006-3.
  • Kafle A, Timilsina A, Gautam A, Adhikari K, Bhattarai A, Aryal N. 2022. Phytoremediation: mechanisms, plant selection and enhancement by natural and synthetic agents. Environ Adv. 8:100203. doi: 10.1016/j.envadv.2022.100203.
  • Khan UW, Yasin AN, Ahmad RS, Ali A, Ahmad A, Akram W, Faisal M. 2018. Role of Burkholderia cepacia CS8 in Cd-stress alleviation and phytoremediation by Catharanthus roseus. Int J Phytoremediation. 20(6):581–592. doi: 10.1080/15226514.2017.1405378.
  • Khan Q, Zahoor M, Salman SM, Wahab M, Bari UW. 2022. Phytoremediation of toxic heavy metals in polluted soils and water of Dargai District Malakand Khyber Pakhtunkhwa, Pakistan. Braz J Biol. 84:2024. doi: 10.1590/1519-6984.265278.
  • Khilji S, Bareen F. 2008. Rhizofiltration of heavy metals from the tannery sludge by the anchored hydrophyte, Hydrocotyle umbellata L. Afr J Biotechnol. 7(20):3711–3717. doi: 10.5897/AJB08.608.
  • Kumar D, Dhankher OM, Tripathi RD, Seth CS. 2023. Titanium dioxide nanoparticles potentially regulate the mechanism(s) for photosynthetic attributes, genotoxicity, antioxidants defense machinery, and phytochelatins synthesis in relation to hexavalent chromium toxicity in Helianthus annuus L. J Hazard Mater. 454:131418. doi: 10.1016/j.jhazmat.2023.131418.
  • Kumar D, Seth CS. 2022. Photosynthesis, lipid peroxidation, and antioxidative responses of Helianthus annuus L. against chromium (VI) accumulation. Int J Phytoremediation. 24(6):590–599. doi: 10.1080/15226514.2021.1958747.
  • Lee H, Jo J, Son D. 1998. Molecular cloning and characterization of the gene encoding glutathione reductase in Brassica campestris. Biochim Biophys Acta. 1395(3): 309–314. doi: 10.1016/s0167-4781(97)00198-x.PMID: 9512665.
  • Li R, Wang W, Wang W, Li F, Wang Q, Xu Y, Wang S. 2015. Overexpression of a cysteine proteinase inhibitor gene from Jatropha curcas confers enhanced tolerance to salinity stress. Electron J Biotechnol. 18(5):368–375. doi: 10.1016/j.ejbt.2015.08.002.
  • Li X, Chang Z, Lian X, Meng G, Ma J, Guo R, Wang Y. 2022. Phytoremediation of cadmium contaminated alkaline soil using the ornamental hyper accumulator Mirabilis jalapa L. enhanced by double harvesting: a field study. Environ Sci Pollut Res Int. 29(22):33506–33513. doi: 10.1007/s11356-022-18589-1.
  • Lichtenthaler HK, Buschmann C. 2001. Chlorophyll and carotenoids: measurement and characterization by UV-VIS spectroscopy. Curr Protoc Food Anal Chem. doi: 10.1002/0471142913.faf0403s01.
  • Liptáková L, Demecsová L, Valentovičová K, Zelinová V, Tamás L. 2022. Early gene expression response of barley root tip to toxic concentrations of cadmium. Plant Mol Biol. 108(1-2):145–155. doi: 10.1007/s11103-021-01233-w.
  • Luo C, Liu C, Wang Y, Liu X, Li F, Zhang G, Li X. 2011. Heavy metal contamination in soils and vegetables near an e-waste processing site, South China. J Hazard Mater. 186(1):481–490. PMID: 21144651. doi: 10.1016/j.jhazmat.2010.11.024.
  • Ma L, Wei Q, Chen Y, Song Q, Sun C, Wang Z, Wu G. 2018. Removal of cadmium from aqueous solutions using industrial coal fly ash-nZVI. R Soc Open Sci. 5(2):171051–171059. doi: 10.1098/rsos.171051.
  • Mahmud AJ, Hasanuzzaman M, Nahar K, Bhuyan B, Fujita M. 2018. Insights into citric acid-induced cadmium tolerance and phytoremediation in Brassica juncea L.: coordinated functions of metal chelation, antioxidant defense and glyoxalase systems. Ecotoxicol Environ Saf. 147:990–1001. doi: 10.1016/j.ecoenv.2017.09.045.
  • Marowa P, Ding A, Kong Y. 2016. Expansins: roles in plant growth and potential applications in crop improvement. Plant Cell Rep. 35(5):949–965. doi: 10.1007/s00299-016-1948-4.
  • Mariyam S, Bhardwaj S, Khan NA, Sahi SA, Seth CS. 2023. Review on nitric oxide at the forefront of rapid systemic signaling in mitigation of salinity stress in plants: crosstalk with calcium and hydrogen peroxide. Plant Sci. 336:111835. doi: 10.1016/j.plantsci.2023.111835.
  • Meister A, Anderson ME. 1983. γ–glutamyl cycle in plant’s adaptation to environment. Annu Rev Biochem. 52(1):711–760. doi: 10.1146/annurev.bi.52.070183.003431.
  • Nivetha C, Vijay DS, Ravishanker R, Ramkumar S, Azaguraja P. 2020. Use of Pennywort for nitrogen and phosphate removal from sewage. Mater Today: Proc. doi: 10.1016/j.matpr.2020.05.215.
  • Palutoglu M, Akgul B, Suyarko V, Yakovenko M, Kryuchenko N, Sasmaz A. 2018. Phytoremediation of cadmium by native plants grown on mining soil. Bull Environ Contam Toxicol. 100(2):293–297. doi: 10.1007/s00128-017-2220-5.
  • Saleem HM, Fahad S, Khan US, Din M, Ullah A. 2020. Copper-induced oxidative stress, initiation of antioxidants and phytoremediation potential of flax (Linum usitatissimum L.) seedlings grown under the mixing of two different soils of China. Environ Sci Pollut Res. 27:5211–5221. doi: 10.1007/s11356-019-07264.
  • Shaheen S, Ahmad R, Mahmood Q, Mubarak H, Mirza N, Hayat TM. 2018. Physiology and selected genes expression under cadmium stress in Arundo donax L. Int J Phytoremediation. 20(11):1162–1167. doi: 10.1080/15226514.2018.1460312.
  • Shingadgaon SS, Chavan BL. 2019. Evaluation of bioaccumulation factor (BAF), bioconcentration factor (BCF), translocation factor (TF) and metal enrichment factor (MEF) abilities of aquatic macrophyte species exposed to metal contaminated Wastewater. Int J Innov Res Technol Sci Eng 8(1): 329–347.
  • Singh S, Parihar P, Singh R, Singh VP, Prasad SM. 2015. Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci. (6):1143. doi: 10.3389/fpls.2015.01143.
  • Tatu GLA, Vladut NV, Voicea I, Vanghele NA, Pruteanu MA. 2020. Removal of heavy metals from a contaminated soil using phytoremediation. MATEC Web Conf. 305:00061. doi: 10.1051/matecconf/202030500061.
  • Taufikurahman T, Pradisa MAS, Amalia SG, Hutahaean GEM. 2019. Phytoremediation of Chromium (Cr) using Typha angustifolia L., Canna indica L. and Hydrocotyle umbellata L. in surface flow system of constructed wetland. IOP Conf Ser. 308(1):012020. doi: 10.1088/1755-1315/308/1/012020.
  • Wang N, Guo Z, Zhang Y, Zhang P, Liu J, Cheng Y, Zhang L, Li Y. 2020. Effect on intestinal microbiota, bioaccumulation, and oxidative stress of Carassius auratus gibelio under waterborne cadmium exposure. Fish Physiol Biochem. 46(6):2299–2309. doi: 10.1007/s10695-020-00870-0.
  • Wu B, Peng H, Sheng Z, Luo H, Wang X, Zhang R, Xu F, Xu H. 2021. Evaluation of phytoremediation potential of native dominant plants and spatial distribution of heavy metals in abandoned mining area in Southwest China. Ecotoxicol Environ Saf. 220:112368. doi: 10.1016/j.ecoenv.2021.112368.
  • Yadav M, Gupta P, Seth CS. 2022. Foliar application of α-lipoic acid attenuates cadmium toxicity on photosynthetic pigments and nitrogen metabolism in Solanum lycopersicum L. Acta Physiol Plant. 44(11):112.
  • Yan A, Wu M, Yan L, Hu R, Ali I, Gan Y. 2014. AtEXP2 is involved in seed germination and abiotic stress response in Arabidopsis. PLoS One. 9(1):e85208. doi: 10.1371/journal.pone.0085208.
  • Yang C, Ho YN, Inoue C, Chien MF. 2020. Long-term effectiveness of microbe-assisted arsenic phytoremediation by Pteris vittata in field trials. Sci Total Environ. 740:140137. doi: 10.1016/j.scitotenv.2020.140137.
  • Yilmaz HS, Kokten K. 2021. Determination of cadmium accumulation in grains and other plant organs of sorghum varieties. Int J Phytoremediation. 23(14):1457–1465. doi: 10.1080/15226514.2021.1904824.
  • Zhao F, McGrath SP, Crosland AR. 1994. Comparison of three wet digestion methods for the determination of plant sulphur by inductively coupled plasma atomic emission spectroscopy (ICP-AES). Commun Soil Sci Plant Anal. 25(3-4):407–418. doi: 10.1080/00103629409369047.
  • Zhou J, Xie J, Liao H, Wang X. 2014. Overexpression of β-expansin gene GmEXPB2 improves phosphorus efficiency in soybean. Physiol Plant. 150(2):194–204. PMID: 23773128. doi: 10.1111/ppl.12077.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.