92
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Interaction between Haematococcus pluvialis microalgae and lead nitrate: lead adsorption from water

, ORCID Icon, &

References

  • Abdel-Aty AM, Ammar NS, Ghafar HHA, Ali RK. 2013. Biosorption of cadmium and lead from aqueous solution by fresh water alga Anabaena sphaerica biomass. J Adv Res. 4(4):367–374. doi: 10.1016/j.jare.2012.07.004.
  • Agnihotri A, Gupta P, Dwivedi A, Seth CS. 2018. Counteractive mechanism (s) of salicylic acid in response to lead toxicity in Brassica juncea (L.) Czern. cv. Varuna. Planta. 248(1):49–68. doi: 10.1007/s00425-018-2867-0.
  • Agnihotri A, Seth CS. 2020. Does jasmonic acid regulate photosyn­thesis, clastogenecity, and phytochelatins in Brassica juncea L. in response to Pb-subcellular distribution? Chemosphere. 243:125361. doi: 10.1016/j.chemosphere.2019.125361.
  • Al-Homaidan AA, Al-Houri HJ, Al-Hazzani AA, Elgaaly G, Moubayed NM. 2014. Biosorption of copper ions from aqueous solutions by Spirulina platensis biomass. Arabian J Chem. 7(1):57–62. doi: 10.1016/j.arabjc.2013.05.022.
  • Apiratikul R, Pavasant P. 2008. Batch and column studies of biosorption of heavy metals by Caulerpa lentillifera. Bioresour Technol. 99(8):2766–2777. doi: 10.1016/j.biortech.2007.06.036.
  • Bold HC. 1985. Introduction to the algae. Struct Reprod. 720
  • Boominathan R, Doran PM. 2002. Ni-induced oxidative stress in roots of the Ni hyper accumulator, Alyssum bertolonii. New Phytol. 156(2):205–215. doi: 10.1046/j.1469-8137.2002.00506.x.
  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72(1-2):248–254. doi: 10.1016/0003-2697(76)90527-3.
  • Carfagna S, Lanza N, Salbitani G, Basile A, Sorbo S, Vona V. 2013. Physiological and morphological responses of lead or cadmium exposed Chlorella sorokiniana 211-8K (Chlorophyceae). Springerplus. 2(1):147. doi: 10.1186/2193-1801-2-147.
  • Cheng SY, Show PL, Lau BF, Chang JS, Ling TC. 2019. New prospects for modified algae in heavy metal adsorption. Trends Biotechnol. 37(11):1255–1268. doi: 10.1016/j.tibtech.2019.04.007.
  • Dao LH, Beardall J. 2016. Effects of lead on growth, photosynthetic characteristics and production of reactive oxygen species of two freshwater green algae. Chemosphere. 147:420–429. doi: 10.1016/j.chemosphere.2015.12.117.
  • Dong Q, Zhao X, Xing X, Hu J, Gong JNH. 2007. Secretion during astaxanthin synthesis in H. pluvialis under high irradiance and nitrogen deficient conditions. Chin J Chem Eng. 15(2):162–166. doi: 10.1016/S1004-9541(07)60052-4.
  • Edris G, Alhamed Y, Alzahrani A. 2014. Biosorption of cadmium and lead from aqueous solutions by Chlorella vulgaris biomass: equilibrium and kinetic study. Arab J Sci Eng. 39(1):87–93. doi: 10.1007/s13369-013-0820-x.
  • Elliott AM. 1934. Morphology and life history of Haematococcus pluvialis. Archiv. Protistekunde. 82:250–272.
  • Esteves A, Valdman E, Leite S. 2000. Repeated removal of cadmium and zinc from an industrial effluent by waste biomass Sargassum sp. Biotech Lett. 22(6):499–502. doi: 10.1023/A:1005608701510.
  • Flouty R, Estephane G. 2012. Bioaccumulation and biosorption of copper and lead by a unicellular algae Chlamydomonas reinhardtii in single and binary metal systems: a comparative study. J Environ Manage. 111:106–114. doi: 10.1016/j.jenvman.2012.06.042.
  • Fraile A, Penche S, González F, Blázquez ML, Muñoz JA, Ballester A. 2005. Biosorption of copper, zinc, cadmium and nickel by Chlorella vulgaris. Chem Ecol. 21(1):61–75. doi: 10.1080/02757540512331334933.
  • Gupta P, Seth CS. 2022. 24-epibrassinolide regulates functional components of nitric oxide signalling and antioxidant defense pathways to alleviate salinity stress in Brassica juncea L. cv. Varuna. J Plant Growth Regul. 42(7):4207–4222. doi: 10.1007/s00344-022-10884-y.
  • Gupta S, Seth CS. 2021. Salicylic acid alleviates chromium (VI) toxicity by restricting its uptake, improving photosynthesis and augmenting antioxidant defense in Solanum lycopersicum L. Physiol Mol Biol Plants. 27(11):2651–2664. doi: 10.1007/s12298-021-01088-x.
  • Hagen C, Siegmund S, Braune W. 2002. Ultrastructural and chemical changes in the cell wall of Haematococcus pluvialis (Volvocales, Chlorophyta) during aplanospore formation. Euro J Phycol. 37(2):217–226. doi: 10.1017/S0967026202003669.
  • Hamed SM, Zinta G, Klöck G, Asard H, Selim S, AbdElgawad H. 2017. Zinc-induced differential oxidative stress and antioxidant responses in Chlorella sorokiniana and Scenedesmus acuminatus. Ecotoxicol Environ Saf. 140:256–263. doi: 10.1016/j.ecoenv.2017.02.055.
  • Hasanuzzaman M, Bhuyan M, Zulfiqar F, Raza A, Mohsin SM, Mahmud JA, Fujita M, Fotopoulos V. 2020. Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants (Basel). 9(8):681. doi: 10.3390/antiox9080681.
  • Hazani A, Ibrahim M, Shehata A, El-Gaaly G, Daoud M, Fouad D, Rizwana H, Moubayed N. 2013. Ecotoxicity of Ag-nanoparticles on two microalgae, Chlorella vulgaris and Dunaliella tertiolecta. Arch Biol Sci (Beogr). 65(4):1447–1457. doi: 10.2298/ABS1304447H.
  • Hazen TE. 1899. The life history of Sphaerella lacustris (Haematococcus pluvialis). Memoirs Torrey Botanical Club. 6(3):211–246.
  • He J, Chen JP. 2014. A comprehensive review on biosorption of heavy metals by algal biomass: materials, performances, chemistry, and modeling simulation tools. Bioresour Technol. 160:67–78. doi: 10.1016/j.biortech.2014.01.068.
  • Holan Z, Volesky B. 1994. Biosorption of lead and nickel by biomass of marine algae. Biotechnol Bioeng. 43(11):1001–1009. doi: 10.1002/bit.260431102.
  • Itoh M, Yuasa M, Kobayashi T. 1975. Adsorption of metal ions on yeast cells at varied cell concentrations. Plant Cell Phys. 16(6):1167–1169. doi: 10.1093/oxfordjournals.pcp.a075237.
  • Iyer A, Mody K, Jha B. 2005. Biosorption of heavy metals by a marine bacterium. Mar Pollut Bull. 50(3):340–343. doi: 10.1016/j.marpolbul.2004.11.012.
  • Kastori R, Plesničar M, Sakač Z, Panković D, Arsenijević-Maksimović I. 1998. Effect of excess lead on sunflower growth and photosynthesis. J Plant Nutr. 21(1):75–85. doi: 10.1080/01904169809365384.
  • Khudsar T, Mahmooduzzafar M, Iqbal M. 2001. Cadmium-induced changes in leaf epidermes, photosynthetic rate and pigment concentrations in Cajanus cajan. Biologia Plant. 44(1):59–64. doi: 10.1023/A:1017918320697.
  • Kobayashi M, Kakizono T, Nishio N, Nagai S, Kurimura Y, Tsuji Y. 1997. Antioxidant role of astaxanthin in the green alga Haematococcus pluvialis. Appl Microbiol Biotechnol. 48(3):351–356. doi: 10.1007/s002530051061.
  • Kopittke PM, Asher CJ, Kopittke RA, Menzies NW. 2007. Toxic effects of Pb2+ on growth of cowpea (Vigna unguiculata). Environ Pollut. 150(2):280–287. doi: 10.1016/j.envpol.2007.01.011.
  • Kováčik J, Babula P, Peterková V, Hedbavny J. 2017. Long-term impact of cadmium shows little damage in Scenedesmus acutiformis cultures. Algal Research. 25:184–190. doi: 10.1016/j.algal.2017.04.029.
  • Kumar D, Dhankher OP, Tripathi RD, Seth CS. 2023. Titanium dioxide nanoparticles potentially regulate the mechanism (s) for photosynthetic attributes, genotoxicity, antioxidants defense machinery, and phytochelatins synthesis in relation to hexavalent chromium toxicity in Helianthus annuus L. J Hazard Mater. 454:131418. doi: 10.1016/j.jhazmat.2023.131418.
  • Lakmali WM, Athukorala ASN, Jayasundera KB. 2022. Investigation of Pb (II) bioremediation potential of algae and cyanobacteria strains isolated from polluted water. Water Sci Eng. 15(3):237–246. doi: 10.1016/j.wse.2022.04.003.
  • Lee Y-C, Chang S-P. 2011. The biosorption of heavy metals from aqueous solution by Spirogyra and Cladophora filamentous macroalgae. Bioresour Technol. 102(9):5297–5304. doi: 10.1016/j.biortech.2010.12.103.
  • Lekshmi R, Rejiniemon TS, Sathya R, Kuppusamy P, Al-Mekhlafi FA, Wadaan MA, Rajendran P. 2022. Adsorption of heavy metals from the aqueous solution using activated biomass from Ulva flexuosa. Chemosphere. 306:135479. doi: 10.1016/j.chemosphere.2022.135479.
  • Machado MD, Lopes AR, Soares EV. 2015. Responses of the alga Pseudokirchneriella subcapitata to long-term exposure to metal stress. J Hazard Mater. 296:82–92. doi: 10.1016/j.jhazmat.2015.04.022.
  • Maleki M, Ghorbanpour M, Kariman K. 2017. Physiological and antioxidative responses of medicinal plants exposed to heavy metals stress. Plant Gene. 11:247–254. doi: 10.1016/j.plgene.2017.04.006.
  • Maznah WW, Al-Fawwaz A, Surif M. 2012. Biosorption of copper and zinc by immobilised and free algal biomass, and the effects of metal biosorption on the growth and cellular structure of Chlorella sp. and Chlamydomonas sp. isolated from rivers in Penang, Malaysia. J Environ Sci (China). 24(8):1386–1393. doi: 10.1016/S1001-0742(11)60931-5.
  • Mirghaffari N, Moeini E, Farhadian O. 2015. Biosorption of Cd and Pb ions from aqueous solutions by biomass of the green microalga, Scenedesmus quadricauda. J Appl Phycol. 27(1):311–320. doi: 10.1007/s10811-014-0345-z.
  • Moenne A, González A, Sáez CA. 2016. Mechanisms of metal tolerance in marine macroalgae, with emphasis on copper tolerance in Chlorophyta and Rhodophyta. Aquat Toxicol. 176:30–37. doi: 10.1016/j.aquatox.2016.04.015.
  • Oslan SNH, Shoparwe NF, Yusoff AH, Rahim AA, Chang CS, Tan JS, Oslan SN, Arumugam K, Ariff AB, Sulaiman AZ, et al. 2021. A review on Haematococcus pluvialis bioprocess optimization of green and red stage culture conditions for the production of natural astaxanthin. Biomolecules. 11(2):256. doi: 10.3390/biom11020256.
  • Palma JM, Sandalio LM, Corpas FJ, Romero-Puertas MC, McCarthy I, Luis A. 2002. Plant proteases, protein degradation, and oxidative stress: role of peroxisomes. Plant Physiol Biochem. 40(6–8):521–530. doi: 10.1016/S0981-9428(02)01404-3.
  • Pinto E, Sigaud-Kutner TCS, Leitão MAS, Okamoto OK, Morse D, Colepicolo P. 2003. Heavy metal–induced oxidative stress in algae 1. J Phycol. 39(6):1008–1018. doi: 10.1111/j.0022-3646.2003.02-193.x.
  • Piotrowska-Niczyporuk A, Bajguz A, Zambrzycka-Szelewa E. 2017. Response and the detoxification strategies of green alga Acutodesmus obliquus (Chlorophyceae) under lead stress. Environ Exp Bot. 144:25–36. doi: 10.1016/j.envexpbot.2017.08.013.
  • Prasad MNV. 2004. Heavy metal stress in plants: from biomolecules to ecosystems. Springer Science & Business Media. doi: 10.1007/978-3-662-07743-6.
  • Rezaee A, Ramavandi B, Ganati F, Ansari M, Solimanian A. 2006. Biosorption of mercury by biomass of filamentous algae spirogyra species. J Biol Sci. 6(4):695–700. doi: 10.3923/jbs.2006.695.700.
  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology. 111(1):1–61. doi: 10.1099/00221287-111-1-1.
  • Roháček K. 2002. Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. Photosynt. 40(1):13–29. doi: 10.1023/A:1020125719386.
  • Santana-Casiano JM, González-Dávila M, Laglera LM, Pérez-Peña J, Brand L, Millero FJ. 1997. The influence of zinc, aluminum and cadmium on the uptake kinetics of iron by algae. Mar Chem. 59(1-2):95–111. doi: 10.1016/S0304-4203(97)00068-6.
  • Sari A, Tuzen M. 2008. Biosorption of cadmium (II) from aqueous solution by red algae (Ceramium virgatum): equilibrium, kinetic and thermodynamic studies. J Hazard Mater. 157(2-3):448–454. doi: 10.1016/j.jhazmat.2008.01.008.
  • Savicka M, Škute N. 2010. Effects of high temperature on malondialdehyde content, superoxide production and growth changes in wheat seedlings (Triticum aestivum L.). Ekologija. 56(1):26–33. doi: 10.2478/v10055-010-0004-x.
  • Sayadi M. 2017. Grain size fraction of heavy metals in soil and their relationship with land use. Proceedings of the International Academy of Ecology and Environmental Sciences 7, p. 1.
  • Sayadi M, Torabi S. 2009. Geochemistry of soil and human health: a review. Pollut Res. 28:257–262.
  • Shanab S, Essa A, Shalaby E. 2012. Bioremoval capacity of three heavy metals by some microalgae species (Egyptian Isolates). Plant Signal Behav. 7(3):392–399. doi: 10.4161/psb.19173.
  • Sharma P, Dubey RS. 2005. Lead toxicity in plants. Braz J Plant Physiol. 17(1):35–52. doi: 10.1590/S1677-04202005000100004.
  • Siddiqui MH, Al-Whaibi MH, Basalah MO. 2011. Interactive effect of calcium and gibberellin on nickel tolerance in relation to antioxidant systems in Triticum aestivum L. Protoplasma. 248(3):503–511. doi: 10.1007/s00709-010-0197-6.
  • Singh S, Parihar P, Singh R, Singh VP, Prasad SM. 2015. Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci. 6:1143. doi: 10.3389/fpls.2015.01143.
  • Solovchenko AE. 2015. Recent breakthroughs in the biology of astaxanthin accumulation by microalgal cell. Photosynth Res. 125(3):437–449. doi: 10.1007/s11120-015-0156-3.
  • Solovchenko A, Solovchenko O, Khozin-Goldberg I, Didi-Cohen S, Pal D, Cohen Z, Boussiba S. 2013. Probing the effects of high-light stress on pigment and lipid metabolism in nitrogen-starving microalgae by measuring chlorophyll fluorescence transients: studies with a Δ5 desaturase mutant of Parietochloris incisa (Chlorophyta, Trebouxiophyceae). Algal Res. 2(3):175–182. doi: 10.1016/j.algal.2013.01.010.
  • Srivastava D, Tiwari M, Dutta P, Singh P, Chawda K, Kumari M, Chakrabarty D. 2021. Chromium stress in plants: toxicity, tolerance and phytoremediation. Sustainability. 13(9):4629. doi: 10.3390/su13094629.
  • Sundaramoorthy P, Chidambaram A, Ganesh KS, Unnikannan P, Baskaran L. 2010. Chromium stress in paddy:(i) nutrient status of paddy under chromium stress;(ii) phytoremediation of chromium by aquatic and terrestrial weeds. C R Biol. 333(8):597–607. doi: 10.1016/j.crvi.2010.03.002.
  • Vogel M, Günther A, Rossberg A, Li B, Bernhard G, Raff J. 2010. Biosorption of U (VI) by the green algae Chlorella vulgaris in dependence of pH value and cell activity. Sci Total Environ. 409(2):384–395. doi: 10.1016/j.scitotenv.2010.10.011.
  • Wellburn AR. 1994. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol. 144(3):307–313. doi: 10.1016/S0176-1617(11)81192-2.
  • Yu K, Lau BF, Show PL, Ong HC, Ling TC, Chen W, Ng EP, Chang J. 2017. Recent developments on algal biochar production and characterization. Bioresour Technol. 246:2–11. doi: 10.1016/j.biortech.2017.08.009.
  • Zewail RM, El-Desoukey HS, Islam KR. 2020. Chromium stress alleviation by salicylic acid in Malabar spinach (Basella alba). J Plant Nutr. 43(9):1268–1285. doi: 10.1080/01904167.2020.1727504.
  • Zis T, Ronningen V, Scrosati R. 2004. Minor improvement for intertidal seaweeds and invertebrates after acid mine drainage diversion at Britannia Beach, Pacific Canada. Mar Pollut Bull. 48(11–12):1040–1047. doi: 10.1016/j.marpolbul.2003.12.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.