318
Views
1
CrossRef citations to date
0
Altmetric
Research Article

VASA: an exploratory visualization tool for mapping spatio-temporal structure of mobility – a COVID-19 case study

ORCID Icon, & ORCID Icon
Pages 275-296 | Received 09 Feb 2022, Accepted 05 Dec 2022, Published online: 21 Feb 2023

References

  • Andersen, L. M., Harden, S. R., Sugg, M. M., Runkle, J. D., & Lundquist, T. E. (2021). Analyzing the spatial determinants of local COVID-19 transmission in the United States. The Science of the Total Environment, 754, 142396. https://doi.org/10.1016/j.scitotenv.2020.142396
  • Andrienko, N., Andrienko, G., & Gatalsky, P. (2003). Exploratory spatio-temporal visualization: An analytical review. Journal of Visual Languages & Computing, 14(6), 503–541. https://doi.org/10.1016/S1045-926X(03)00046-6
  • Anselin, L. (1995). Local indicators of spatial association—lisa. Geographical Analysis, 27(2), 93–115. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
  • Anselin, L. (2019). A local indicator of multivariate spatial association: Extending Geary’s C. Geographical Analysis, 51(2), 133–150. https://doi.org/10.1111/gean.12164
  • Anselin, L., & Rey, S. (1991). Properties of tests for spatial dependence in linear regression models. Geographical Analysis, 23(2), 112–131. https://doi.org/10.1111/j.1538-4632.1991.tb00228.x
  • Anselin, L., & Rey, S. J. (2014). Modern spatial econometrics in practice: A guide to GeoDa, GeoDaspace and PySAL. GeoDa Press LLC.
  • Beecham, R., Dykes, J., Hama, L., & Lomax, N. (2021). On the use of ‘glyphmaps’ for analysing the scale and temporal spread of COVID-19 reported cases. ISPRS International Journal of Geo-Information, 10(4), 213. https://doi.org/10.3390/ijgi10040213
  • Bertin, J. (2010). Semiology of graphics: Diagrams, networks, maps. Esri Press.
  • Blackwell, H. (2021). Georgia: State-by-state COVID-19 guidance. Retrieved December 28, 2021, from https://www.huschblackwell.com/georgia-state-by-state-covid-19-guidance
  • Boulos, M. N. K., & Geraghty, E. M. (2020). Geographical tracking and mapping of coronavirus disease COVID-19/severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic and associated events around the world: How 21st century GIS technologies are supporting the global fight against outbreaks and epidemics. (Vol. 19, No. 1). BioMed Central.
  • Chowkwanyun, M., & Reed, A. L., Jr. (2020). Racial health disparities and covid-19—caution and context. The New England Journal of Medicine, 383(3), 201–203. https://doi.org/10.1056/NEJMp2012910
  • Cos, O. D., Castillo, V., & Cantarero, D. (2020). Facing a second wave from a regional view: Spatial patterns of COVID-19 as a key determinant for public health and geoprevention plans. International Journal of Environmental Research and Public Health, 17(22), 8468. https://doi.org/10.3390/ijerph17228468
  • DiBiase, D., MacEachren, A. M., Krygier, J. B., & Reeves, C. (1992). Animation and the role of map design in scientific visualization. Cartography and Geographic Information Systems, 19(4), 201–214. https://doi.org/10.1559/152304092783721295
  • Dong, E., Du, H., & Gardner, L. (2020). An interactive web-based dashboard to track COVID- 19 in real time. The Lancet Infectious Diseases, 20(5), 533–534. https://doi.org/10.1016/S1473-3099(20)30120-1
  • ESRI. (2021). Emerging Hot Spot Analysis (Space Time Pattern Mining). Retrieved December 28, 2021, from https://pro.arcgis.com/en/pro-app/2.8/tool-reference/space-time-pattern-mining/emerginghotspots.htm
  • Farber, S., Páez, A., & Volz, E. (2009). Topology and dependency tests in spatial and network autoregressive models. Geographical Analysis, 41(2), 158–180. https://doi.org/10.1111/j.1538-4632.2009.00751.x
  • Field, K. (2020). Mapping coronavirus, responsibly. ArcGIS Blog, 25. https://www.esri.com/arcgis-blog/products/product/mapping/mapping-coronavirus-responsibly/
  • Florax, R. J., & Rey, S. (1995). The impacts of misspecified spatial interaction in linear regression models. In Anselin, L., & Florax, R. J. G. M. (Eds.), New directions in spatial econometrics (pp. 111–135). Springer.
  • Fotheringham, A. S., & Wong, D. W. (1991). The modifiable areal unit problem in multivariate statistical analysis. Environment & planning A, 23(7), 1025–1044. https://doi.org/10.1068/a231025
  • Franch-Pardo, I., Napoletano, B. M., Rosete-Verges, F., & Billa, L. (2020). Spatial analysis and GIS in the study of COVID-19. A review. The Science of the Total Environment, 739, 140033. https://doi.org/10.1016/j.scitotenv.2020.140033
  • Gao, Y., Cheng, J., Meng, H., & Liu, Y. (2019). Measuring spatio-temporal autocorrelation in time series data of collective human mobility. Geo-Spatial Information Science, 22(3), 166–173. https://doi.org/10.1080/10095020.2019.1643609
  • Geary, R. C. (1954). The contiguity ratio and statistical mapping. The Incorporated Statistician, 5(3), 115–146. https://doi.org/10.2307/2986645
  • Getis, A., & Ord, J. K. (1992). The analysis of spatial association by use of distance statistics. Geographical Analysis, 24(3), 189–206. https://doi.org/10.1111/j.1538-4632.1992.tb00261.x
  • Griffith, D. A., & Heuvelink, G. (2012). Deriving space-time variograms from space-time autoregressive (star) model specifications. In Cartwright W., Gartner G., Meng L., & Peterson M. P. (Eds.), Advances in spatial data handling and gis (pp. 3–12). Springer.
  • Grossman, G., Kim, S., Rexer, J. M., & Thirumurthy, H. (2020). Political partisanship influences behavioral responses to governors’ recommendations for covid-19 prevention in the United states. Proceedings of the National Academy of Sciences, 117(39), 24144–24153. https://doi.org/10.1073/pnas.2007835117
  • Guan, W.J., Zheng-Yi, N., Hu, Y., Liang, W.H., Chun-Quan, O., Jian-Xing, H., Liu, L., Shan, H., Lei, C.L., Hui, D. S., Du, B., Li, L. -J., Zeng, G., Yuen, K. -Y., Chen, R. -C., Tang, C. -L., Wang, T., Chen, P. -Y., Xiang, J. (2020). Clinical characteristics of coronavirus disease 2019 in China. The New England Journal of Medicine, 382(18), 1708–1720. https://doi.org/10.1056/NEJMoa2002032
  • Hamidi, S., Sabouri, S., & Ewing, R. (2020). Does density aggravate the COVID-19 pandemic? Early findings and lessons for planners. Journal of the American Planning Association, 86(4), 495–509. https://doi.org/10.1080/01944363.2020.1777891
  • Haug, N., Geyrhofer, L., Londei, A., Dervic, E., Desvars Larrive, A., Loreto, V., Pinior B, Thurner S, Klimek, P. (2020). Ranking the effectiveness of worldwide COVID-19 government interventions. Nature Human Behaviour, 4(12), 1303–1312. https://doi.org/10.1038/s41562-020-01009-0
  • Hegarty, M. (2011). The cognitive science of visual-spatial displays: Implications for design. Topics in Cognitive Science, 3(3), 446–474. https://doi.org/10.1111/j.1756-8765.2011.01150.x
  • Hohl, A., Delmelle, E. M., Desjardins, M. R., & Lan, Y. (2020). Daily surveillance of COVID- 19 using the prospective space-time scan statistic in the United States. Spatial and Spatio- Temporal Epidemiology, 34, 100354. https://doi.org/10.1016/j.sste.2020.100354
  • Hsiang, S., Allen, D., Annan-Phan, S., Bell, K., Bolliger, I., Chong, T., Druckenmiller H, Huang, L. Y., Hultgren A, Krasovich E, & Lau P. (2020). The effect of large-scale anti-contagion policies on the COVID-19 pandemic. Nature, 584(7820), 262–267. https://doi.org/10.1038/s41586-020-2404-8
  • Iacus, S. M., Santamaria, C., Sermi, F., Spyratos, S., Tarchi, D., & Vespe, M. (2020). Human mobility and COVID-19 initial dynamics. Nonlinear Dynamics, 101(3), 1901–1919. https://doi.org/10.1007/s11071-020-05854-6
  • Ivanković, D., Barbazza, E., Bos, V., Fernandes, Ó. B., Gilmore, K. J., Jansen, T., Kara, P., Larrain, N., Lu, S., Meza-Torres, B., Mulyanto, J., Poldrugovac, M., Rotar, A., Wang, S., Willmington, C., Yang, Y., Yelgezekova, Z., Allin, S., Klazinga, N. (2021). Features constituting actionable COVID-19 dashboards: Descriptive assessment and expert appraisal of 158 public web-based COVID-19 dashboards. Journal of Medical Internet Research, 23(2), e25682. https://doi.org/10.2196/25682
  • Jordahl, K., den Bossche, J. V., Fleischmann, M., Wasserman, J., McBride, J., Gerard, J., Leblanc, F., Tratner J, Perry M, Badaracco, A. G., Farmer C, & Leblanc, F. (2020, July). geopandas/geopandas: v0.8.1. Zenodo. https://doi.org/10.5281/zenodo.3946761
  • Juergens, C. (2020). Trustworthy COVID-19 mapping: Geo-spatial data literacy aspects of choropleth maps. KN-Journal of Cartography and Geographic Information, 70(4), 155–161. https://doi.org/10.1007/s42489-020-00057-w
  • Keim, D., Andrienko, G., Fekete, J. -D., Görg, C., Kohlhammer, J., & Melanc¸on, G. (2008). Visual analytics: Definition, process, and challenges. In Kerren, A., Stasko, J. T., Fekete, J. D. & North, C. (Eds.), Information visualization (pp. 154–175). Springer.
  • Kraemer, M. U., Yang, C. -H., Gutierrez, B., Wu, C. -H., Klein, B., Pigott, D. M., Du Plessis, L., Faria, N. R., Li, R., Hanage, W. P., Brownstein, J. S., Layan, M., Vespignani, A., Tian, H., Dye, C., Pybus, O. G., & Scarpino, S. V. (2020). The effect of human mobility and control measures on the COVID-19 epidemic in China. Science, 368(6490), 493–497. https://doi.org/10.1126/science.abb4218
  • Kucharski, A. J., Klepac, P., Conlan, A. J., Kissler, S. M., Tang, M. L., Fry, H., Gog, J. R., Edmunds, W. J., Emery, J. C., Medley G, & Munday, J. D. (2020). Effectiveness of isolation, testing, contact tracing, and physical distancing on reducing transmission of SARS-CoV-2 in different settings: A mathematical modelling study. The Lancet Infectious Diseases, 20(10), 1151–1160. https://doi.org/10.1016/S1473-3099(20)30457-6
  • Lan, Y., Desjardins, M. R., Hohl, A., & Delmelle, E. (2021). Geovisualization of COVID-19: State of the art and opportunities. Cartographica: The International Journal for Geographic Information and Geovisualization, 56(1), 2–13. https://doi.org/10.3138/cart-2020-0027
  • Lee, J., & Li, S. (2017). Extending Moran’s index for measuring spatiotemporal clustering of geographic events. Geographical Analysis, 49(1), 36–57. https://doi.org/10.1111/gean.12106
  • Leung, C. K., Chen, Y., Hoi, C. S., Shang, S., Wen, Y., & Cuzzocrea, A. (2020). Big data visualization and visual analytics of COVID-19 data. In 2020 24th international conference information visualisation (iv) (pp. 415–420). IEEE.
  • Li, J., & Giabbanelli, P. (2021). Returning to a normal life via COVID-19 vaccines in the United States: A large-scale agent-based simulation study. JMIR Medical Informatics, 9(4), e27419. https://doi.org/10.2196/27419
  • Loo, B. P., Tsoi, K. H., Wong, P. P., & Lai, P. C. (2021). Identification of superspreading environment under COVID-19 through human mobility data. Scientific Reports, 11(1), 1–9. https://doi.org/10.1038/s41598-021-84089-w
  • Lyseen, A. -K., Nøhr, C., Sørensen, E. -M., Gudes, O., Geraghty, E., Shaw, N. T., Bivona-Tellez C, & IMIA Health GIS Working Group. (2014). A review and framework for categorizing current research and development in health related geographical information systems (GIS) studies. Yearbook of Medical Informatics, 23(1), 110–124. https://doi.org/10.15265/IY-2014-0008
  • Mapbox. (2022). Mapbox Activity Index Documentation. Retrieved January 14, 2022, from https://docs.mapbox.com/data/movement/guides/activity-index/
  • Matheron, G. (1963). Principles of geostatistics. Economic Geology, 58(8), 1246–1266. https://doi.org/10.2113/gsecongeo.58.8.1246
  • McKinney, W. (2010). Data structures for statistical computing in python. In S. van der Walt & J. Millman (Eds.), Proceedings of the 9th Python in Science Conference, Austin, Texas (pp. 56–61).
  • Mein, S. A. (2020). COVID-19 and health disparities: The reality of “the Great Equalizer”. Journal of General Internal Medicine, 35(8), 2439.
  • Moran, P. A. P. (1948). The interpretation of statistical maps. Journal of the Royal Statistical Society: Series B (Methodological), 10(2), 243–251. http://www.jstor.org/stable/2983777
  • Mo, C., Tan, D., Mai, T., Bei, C., Qin, J., Pang, W., & Zhang, Z. (2020). An analysis of spatiotemporal pattern for COIVD‐19 in China based on space‐time cube. Journal of Medical Virology, 92(9), 1587–1595.
  • Murgante, B., Borruso, G., Balletto, G., Castiglia, P., & Dettori, M. (2020). Why Italy first? Health, geographical and planning aspects of the COVID-19 outbreak. Sustainability, 12(12), 5064. https://doi.org/10.3390/su12125064
  • Noi, E., Rudolph, A., & Dodge, S. (2021a). Assessing COVID-induced changes in spatiotemporal structure of mobility in the United States in 2020: A multi-source analytical framework. International Journal of Geographical Information Science, 36(3), 1–32. https://doi.org/10.1080/13658816.2021.2005796
  • Noi, E., Rudolph, A., & Dodge, S. (2021b). A novel method for mapping spatiotemporal structure of mobility patterns during the COVID-19 pandemic.
  • Nouvellet, P., Bhatia, S., Cori, A., Ainslie, K. E., Baguelin, M., Bhatt, S., Boonyasiri A, Brazeau, N. F., Cattarino L, Cooper, L. V., & Coupland H. (2021). Reduction in mobility and COVID-19 transmission. Nature communications, 12(1), 1–9. https://doi.org/10.1038/s41467-021-21358-2
  • Phillips, N., Park, I. -W., Robinson, J. R., & Jones, H. P. (2021). The perfect storm: COVID- 19 health disparities in US Blacks. Journal of Racial and Ethnic Health Disparities, 8(5), 1153–1160. https://doi.org/10.1007/s40615-020-00871-y
  • Pietz, J., McCoy, S., & Wilck, J. H. (2020). Chasing John Snow: Data analytics in the COVID-19 era. European Journal of Information Systems, 29(4), 388–404. https://doi.org/10.1080/0960085X.2020.1793698
  • Ponce de Leon, M., Del Valle, J., Fernandez, J. M., Bernardo, M., Cirillo, D., Sanchez-Valle, J. Smith, M., Capella-Gutierrez, S., Gullón, T., & Valencia, A. (2021). COVID-19 flow-maps an open geographic information system on COVID-19 and human mobility for Spain. Scientific Data, 8(1), 1–16. https://doi.org/10.1038/s41597-021-01093-5
  • Purwanto, P., Utaya, S., Handoyo, B., Bachri, S., Astuti, I. S., Utomo, K. S. B., & Aldianto, Y. E. (2021). Spatiotemporal analysis of COVID-19 spread with emerging hotspot analysis and space–time cube models in East Java, Indonesia. ISPRS International Journal of GeoInformation, 10(3), 133. https://doi.org/10.3390/ijgi10030133
  • Ramírez-Aldana, R., Gomez-Verjan, J. C., & Bello-Chavolla, O. Y. (2020). Spatial analysis of COVID-19 spread in Iran: Insights into geographical and structural transmission determinants at a province level. PLoS Neglected Tropical Diseases, 14(11), e0008875. https://doi.org/10.1371/journal.pntd.0008875
  • Reinert, A., Snyder, L. S., Zhao, J., Fox, A. S., Hougen, D. F., Nicholson, C., & Ebert, D. S. (2020). Visual analytics for decision-making during pandemics. Computing in Science & Engineering, 22(6), 48–59. https://doi.org/10.1109/MCSE.2020.3023288
  • Rey, S. J., & Anselin, L. (2007). PySAL: A python library of spatial analytical methods. The Review of Regional Studies, 37(1), 5–27. https://doi.org/10.52324/001c.8285
  • Ripley, B. D. (1976). The second-order analysis of stationary point processes. Journal of Applied Probability, 13(2), 255–266. https://doi.org/10.2307/3212829
  • Rosenkrantz, L., Schuurman, N., Bell, N., & Amram, O. (2021). The need for GIScience in mapping COVID-19. Health & Place, 67, 102389. https://doi.org/10.1016/j.healthplace.2020.102389
  • Rubin, D. B. (1976). Inference and missing data. Biometrika, 63(3), 581–592. https://doi.org/10.1093/biomet/63.3.581
  • Sahnan, D., Goel, V., Masud, S., Jain, C., Goyal, V., & Chakraborty, T. (2021). DiVA: A scalable, interactive and customizable visual analytics platform for information diffusion on large networks. arXiv preprint arXiv:2112.06267. https://doi.org/10.1145/3558771
  • Scarpone, C., Brinkmann, S. T., Große, T., Sonnenwald, D., Fuchs, M., & Walker, B. B. (2020). A multimethod approach for county-scale geospatial analysis of emerging infectious diseases: A cross-sectional case study of COVID-19 incidence in Germany. International Journal of Health Geographics, 19(1), 1–17. https://doi.org/10.1186/s12942-020-00225-1
  • Slocum, T. A., MacMaster, R. B., Kessler, F. C., & Howard, H. H. (2009). Thematic cartography and geovisualization (3rd ed.). Pearson Education.
  • Smith, T. E. (2009). Estimation bias in spatial models with strongly connected weight matrices. Geographical Analysis, 41(3), 307–332. https://doi.org/10.1111/j.1538-4632.2009.00758.x
  • Souch, J. M., Cossman, J. S., & Hayward, M. D. (2021). Interstates of infection: Preliminary investigations of human mobility patterns in the COVID-19 pandemic. The Journal of Rural Health, 37(2), 266–271. https://doi.org/10.1111/jrh.12558
  • Stakhovych, S., & Bijmolt, T. H. (2009). Specification of spatial models: A simulation study on weights matrices. Papers in Regional Science, 88(2), 389–408. https://doi.org/10.1111/j.1435-5957.2008.00213.x
  • Tokey, A. I. (2021). Spatial association of mobility and COVID-19 infection rate in the USA: A county-level study using mobile phone location data. Journal of Transport & Health, 22, 101135. https://doi.org/10.1016/j.jth.2021.101135
  • Vasiliev, I. (1997). Mapping time. Cartographica: The International Journal for Geographic Information and Geovisualization, 34(2), 1–51. https://doi.org/10.3138/D357-234G-2M62-4373
  • Xie, Z., Qin, Y., Li, Y., Shen, W., Zheng, Z., & Liu, S. (2020). Spatial and temporal differentiation of COVID-19 epidemic spread in mainland China and its influencing factors. The Science of the Total Environment, 744, 140929. https://doi.org/10.1016/j.scitotenv.2020.140929
  • Xiong, C., Hu, S., Yang, M., Luo, W., & Zhang, L. (2020). Mobile device data reveal the dynamics in a positive relationship between human mobility and COVID-19 infections. Proceedings of the National Academy of Sciences, 117(44), 27087–27089. https://doi.org/10.1073/pnas.2010836117
  • Yin, Z., Huang, W., Ying, S., Tang, P., Kang, Z., & Huang, K. (2021). Measuring of the COVID-19 based on time-geography. International Journal of Environmental Research and Public Health, 18(19), 10313. https://doi.org/10.3390/ijerph181910313

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.