917
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Inferring implicit 3D representations from human figures on pictorial maps

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 97-113 | Received 12 Oct 2022, Accepted 06 Jun 2023, Published online: 26 Jun 2023

References

  • Agarwal, A., & Triggs, B. (2006). Recovering 3D human pose from monocular images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(1), 44–58. https://doi.org/10.1109/TPAMI.2006.21
  • Bäuerle, A., Van Onzenoodt, C., & Ropinski, T. (2021). Net2vis–a visual grammar for automatically generating publication-tailored cnn architecture visualizations. IEEE Transactions on Visualization and Computer Graphics, 27(6), 2980–2991. https://doi.org/10.1109/TVCG.2021.3057483
  • Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., & Taubin, G. (1999). The ball-pivoting algorithm for surface reconstruction. IEEE Transactions on Visualization and Computer Graphics, 5(4), 349–359. https://doi.org/10.1109/2945.817351
  • Blender Foundation. (2022). Blender. https://www.blender.org/
  • Brodt, K., & Bessmeltsev, M. (2022). Sketch2pose: Estimating a 3D character pose from a bitmap sketch. ACM Transactions on Graphics, 41(4), 1–15. https://doi.org/10.1145/3528223.3530106
  • Cesium GS.(2022). CesiumJS. Cesium. https://cesium.com/platform/cesiumjs/
  • Chabra, R., Lenssen, J. E., Ilg, E., Schmidt, T., Straub, J., Lovegrove, S., & Newcombe, R. (2020). Deep local shapes: learning local SDF priors for detailed 3D reconstruction. In A. Vedaldi, H. Bischof, T. Brox, & J.-M. Frahm (Eds.), Computer Vision – ECCV 2020 (pp. 608–625). Springer International Publishing. https://doi.org/10.1007/978-3-030-58526-6_36
  • Chen, X., Mottaghi, R., Liu, X., Fidler, S., Urtasun, R., & Yuille, A. (2014). Detect what you can: Detecting and representing objects using holistic models and body parts. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1971–1978). https://doi.org/10.1109/CVPR.2014.254
  • Child, H. (1956). Decorative maps (1st ed.). Studio Publications.
  • Darwin, C. (1839). The voyage of the beagle. Project Gutenberg EBook. https://www.gutenberg.org/files/944/944-h/944-h.htm
  • Delanoy, J., Aubry, M., Isola, P., Efros, A. A., & Bousseau, A. (2018). 3D sketching using multi-view deep volumetric prediction. Proceedings of the ACM on Computer Graphics and Interactive Techniques, 1(1), 21:1–22. https://doi.org/10.1145/3203197
  • Di, X., & Yu, P. (2017). 3D reconstruction of simple objects from a single view silhouette image. ArXiv:1701.04752 [Cs]. http://arxiv.org/abs/1701.04752
  • Döllner, J., & Walther, M. (2003). Real-time expressive rendering of city models. Proceedings on Seventh International Conference on Information Visualization, IV (pp. 245–250). https://doi.org/10.5555/938981.939605
  • Eslami, S. M. A., Jimenez Rezende, D., Besse, F., Viola, F., Morcos, A. S., Garnelo, M., Ruderman, A., Rusu, A. A., Danihelka, I., Gregor, K., Reichert, D. P., Buesing, L., Weber, T., Vinyals, O., Rosenbaum, D., Rabinowitz, N., King, H., Hillier, C., Botvinick, M. … Hassabis, D. (2018). Neural scene representation and rendering. Science, 360(6394), 1204–1210. https://doi.org/10.1126/science.aar6170
  • ESRI. (2022). ArcGIS StoryMaps. https://storymaps.arcgis.com
  • Evangelidis, K., Papadopoulos, T., Papatheodorou, K., Mastorokostas, P., & Hilas, C. (2018). 3D geospatial visualizations: Animation and motion effects on spatial objects. Computers & Geosciences, 111, 200–212. https://doi.org/10.1016/j.cageo.2017.11.007
  • Fahim, G., Amin, K., & Zarif, S. (2021). Single-view 3D reconstruction: A survey of deep learning methods. Computers & Graphics, 94, 164–190. https://doi.org/10.1016/j.cag.2020.12.004
  • Flynn, D. (n.d.). Zurich City Map. Pinterest. https://www.pinterest.co.uk/pin/469922542351340326/
  • Gilbert, B. (2021). Zuckerberg is most worried about Apple, Google, Microsoft, Sony and others as the main competition for the “metaverse.” Business Insider. https://www.businessinsider.com/facebook-says-apple-sony-microsoft-google-are-metaverse-competition-2021-11
  • Goel, S., Kanazawa, A., & Malik, J. (2020). Shape and viewpoint without keypoints. In A. Vedaldi, H. Bischof, T. Brox, & J.-M. Frahm (Eds.), Computer vision – ECCV 2020 (pp. 88–104). Springer International Publishing. https://doi.org/10.1007/978-3-030-58555-6_6
  • Gondara, L. (2016). Medical image denoising using convolutional denoising autoencoders. IEEE 16th International Conference on Data Mining Workshops (pp. 241–246). https://doi.org/10.1109/ICDMW.2016.0041
  • Google. (2022). TensorFlow. https://www.tensorflow.org/
  • Grigorev, A., Sevastopolsky, A., Vakhitov, A., & Lempitsky, V. (2019). Coordinate-based texture inpainting for pose-guided human image generation. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 12127–12136). https://doi.org/10.1109/CVPR.2019.01241
  • Güler, R. A., Trigeorgis, G., Antonakos, E., Snape, P., Zafeiriou, S., & Kokkinos, I. (2017). DenseReg: Fully convolutional dense shape regression in-the-wild. IEEE Conference on Computer Vision and Pattern Recognition (pp. 2614–2623). https://doi.org/10.1109/CVPR.2017.280
  • Hart, J. C. (1996). Sphere tracing: A geometric method for the antialiased ray tracing of implicit surfaces. The Visual Computer, 12(10), 527–545. https://doi.org/10.1007/s003710050084
  • Heitzler, M., & Hurni, L. (2020). Cartographic reconstruction of building footprints from historical maps: A study on the Swiss Siegfried map. Transactions in GIS, 24(2), 442–461. https://doi.org/10.1111/tgis.12610
  • Herold, H., & Hecht, R. (2018). 3D reconstruction of urban history based on old maps. In S. Münster, K. Friedrichs, F. Niebling, & A. Seidel-Grzesińska (Eds.), Digital research and education in architectural heritage (pp. 63–79). Springer International Publishing. https://doi.org/10.1007/978-3-319-76992-9_5
  • Huang, Z., Xu, Y., Lassner, C., Li, H., & Tung, T. (2020). ARCH: Animatable reconstruction of clothed humans. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 3090–3099). https://doi.org/10.1109/CVPR42600.2020.00316
  • Kleineberg, M., Sundt, P. B., & Davies, T. (2021). Mesh-to-sdf. https://github.com/marian42/mesh_to_sdf
  • Lassner, C., & Zollhöfer, M. (2021). Pulsar: Efficient sphere-based neural rendering. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 1440–1449). https://doi.org/10.1109/CVPR46437.2021.00149
  • Lin, C.-H., Wang, C., & Lucey, S. (2020). SDF-SRN: Learning signed distance 3D object reconstruction from static images. Proceedings of the 34th International Conference on Neural Information Processing Systems (pp. 11453–11464). https://doi.org/10.5555/3495724.3496685
  • Liu, S., Saito, S., Chen, W., & Li, H. (2019). Learning to infer implicit surfaces without 3D supervision. Proceedings of the 33rd International Conference on Neural Information Processing Systems (pp. 8295–8306). https://doi.org/10.5555/3454287.3455032
  • Li, M., & Zhang, H. (2021). D2IM-Net: Learning detail disentangled implicit fields from single images. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 10241–10250). https://doi.org/10.1109/CVPR46437.2021.01011
  • Lorensen, W. E., & Cline, H. E. (1987). Marching cubes: A high resolution 3D surface construction algorithm. ACM SIGGRAPH Computer Graphics, 21(4), 163–169. https://doi.org/10.1145/37402.37422
  • Lunz, S., Li, Y., Fitzgibbon, A., & Kushman, N. (2020). Inverse graphics GAN: Learning to generate 3D shapes from unstructured 2D data. ArXiv: 2002.12674 [Cs]. http://arxiv.org/abs/2002.12674
  • Martinez, J., Hossain, R., Romero, J., & Little, J. J. (2017). A simple yet effective baseline for 3d human pose estimation. IEEE International Conference on Computer Vision (pp. 2659–2668). https://doi.org/10.1109/ICCV.2017.288
  • Matt, A. (2019). Charles Darwin and the voyage of the HMS beagle. https://scout.wisc.edu/archives/r50646/charles_darwin_and_the_voyage_of_the_hms_beagle
  • Matthys, M., De Cock, L., Vermaut, J., Van de Weghe, N., & De Maeyer, P. (2021). An “Animated spatial time machine” in co-creation: reconstructing history using gamification integrated into 3D city modelling, 4D web and transmedia storytelling. ISPRS International Journal of Geo-Information, 10(7), Article 7. https://doi.org/10.3390/ijgi10070460460
  • Meta. (2021). The Metaverse and How We’ll Build It Together. Connect 2021. https://www.youtube.com/watch?v=Uvufun6xer8
  • Murer, J. (1576). Murerplan. https://en.wikipedia.org/wiki/Murerplan
  • Naz, A. (2005). 3D interactive pictorial maps [ Master’s thesis]. Texas A&M University. http://oaktrust.library.tamu.edu/handle/1969.1/1571
  • Niu, C., Li, J., & Xu, K. (2018). Im2struct: Recovering 3D shape structure from a single RGB image. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 4521–4529). https://doi.org/10.1109/CVPR.2018.00475
  • Omran, M., Lassner, C., Pons-Moll, G., Gehler, P., & Schiele, B. (2018). Neural body fitting: Unifying deep learning and model based human pose and shape estimation. International Conference on 3D Vision (pp. 484–494). https://doi.org/10.1109/3DV.2018.00062
  • Owen, N. (2015, October). Queensland: National Geographic’s “Traveller” Mag. https://www.behance.net/gallery/30454283/Queensland-National-Geographics-Traveller-Mag
  • Park, S.-M., & Kim, Y.-G. (2022). A metaverse: Taxonomy, components, applications, and open challenges. IEEE Access, 10, 4209–4251. https://doi.org/10.1109/ACCESS.2021.3140175
  • Paschalidou, D., Van Gool, L., & Geiger, A. (2020). Learning unsupervised hierarchical part decomposition of 3D objects from a single RGB image. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 1057–1067). https://doi.org/10.1109/CVPR42600.2020.00114
  • Patel, P., Huang, C.-H. P., Tesch, J., Hoffmann, D. T., Tripathi, S., & Black, M. J. (2021). AGORA: Avatars in geography optimized for regression analysis. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 13463–13473). https://doi.org/10.1109/CVPR46437.2021.01326
  • Pavlakos, G., Choutas, V., Ghorbani, N., Bolkart, T., Osman, A. A., Tzionas, D., & Black, M. J. (2019). Expressive body capture: 3D hands, face, and body from a single image. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 10967–10977). https://doi.org/10.1109/CVPR.2019.01123
  • Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional networks for biomedical image segmentation. In N. Navab, J. Hornegger, W. M. Wells, & A. F. Frangi (Eds.), Medical image computing and computer-assisted intervention – MICCAI 2015 (pp. 234–241). Springer International Publishing.
  • Saito, S., Huang, Z., Natsume, R., Morishima, S., Li, H., & Kanazawa, A. (2019). Pifu: Pixel-aligned implicit function for high-resolution clothed human digitization. 2019 IEEE/CVF International Conference on Computer Vision (pp. 2304–2314). https://doi.org/10.1109/ICCV.2019.00239
  • Saito, S., Simon, T., Saragih, J., & Joo, H. (2020). PIFuHD: Multi-level pixel-aligned implicit function for high-resolution 3D human digitization. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 81–90). https://doi.org/10.1109/CVPR42600.2020.00016
  • Schnürer, R., Eichenberger, R., Sieber, R., & Hurni, L. (2017). Animations for 3D solid charts in a virtual globe – techniques, use cases, and implementation. 28th International Cartographic Conference.
  • Schnürer, R., Öztireli, A. C., Heitzler, M., Sieber, R., & Hurni, L. (2022). Instance segmentation, body part parsing, and pose estimation of human figures in pictorial maps. International Journal of Cartography, 8(3), 291–307. https://doi.org/10.1080/23729333.2021.1949087
  • Schnürer, R., Sieber, R., Schmid Lanter, J., Öztireli, A. C., & Hurni, L. (2021). Detection of pictorial map objects with convolutional neural networks. The Cartographic Journal, 58(1), 50–68. https://doi.org/10.1080/00087041.2020.1738112
  • Schrotter, G., & Hürzeler, C. (2020). The digital twin of the city of Zurich for urban planning. PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 88(1), 99–112. https://doi.org/10.1007/s41064-020-00092-2
  • Scotese, C. (2016). Plate tectonics, paleogeography, and ice ages (Modern World—540Ma). YouTube Animation. https://youtu.be/g_iEWvtKcuQ
  • Shu, Z., Sahasrabudhe, M., Alp Güler, R., Samaras, D., Paragios, N., & Kokkinos, I. (2018). Deforming autoencoders: Unsupervised disentangling of shape and appearance. In V. Ferrari, M. Hebert, C. Sminchisescu, & Y. Weiss (Eds.), Computer vision – ECCV 2018 (pp. 664–680). Springer International Publishing.
  • Soucie, J. M., Wang, C., Forsyth, A., Funk, S., Denny, M., Roach, K. E., Boone, D., & The Hemophilia Treatment Center Network,(2011). Range of motion measurements: Reference values and a database for comparison studies. Haemophilia, 17(3), 500–507. https://doi.org/10.1111/j.1365-2516.2010.02399.x
  • Stadt Zürich. (2022). Zürich 4D. GeoAdmin API. https://api3.geo.admin.ch/
  • swisstopo. (2022). GeoAdmin API. https://api3.geo.admin.ch/
  • Thöny, M., Schnürer, R., Sieber, R., Hurni, L., & Pajarola, R. Storytelling in interactive 3D geographic visualization systems. (2018). ISPRS International Journal of Geo-Information, 7(3), 123, Article 3. https://doi.org/10.3390/ijgi7030123
  • Varol, G., Ceylan, D., Russell, B., Yang, J., Yumer, E., Laptev, I., & Schmid, C. (2018). BodyNet: Volumetric inference of 3D human body shapes. In V. Ferrari, M. Hebert, C. Sminchisescu, & Y. Weiss (Eds.), Computer vision – ECCV 2018 (pp. 20–38). Springer International Publishing. https://doi.org/10.1007/978-3-030-01234-2_2
  • Wang, W., Xu, Q., Ceylan, D., Mech, R., & Neumann, U. (2019). DISN: Deep implicit surface network for high-quality single-view 3D reconstruction. Proceedings of the 33rd International Conference on Neural Information Processing Systems (pp. 492–502). https://doi.org/10.5555/3454287.3454332
  • Wang, X., & Yu, J. (2020). Learning to cartoonize using white-box cartoon representations. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 8087–8096). https://doi.org/10.1109/CVPR42600.2020.00811
  • Wu, S., Heitzler, M., & Hurni, L. (2022). Leveraging uncertainty estimation and spatial pyramid pooling for extracting hydrological features from scanned historical topographic maps. GIScience & Remote Sensing, 59(1), 200–214. https://doi.org/10.1080/15481603.2021.2023840
  • Yao, P., Fang, Z., Wu, F., Feng, Y., & Li, J. (2019). DenseBody: Directly regressing dense 3D human pose and shape from a single color image. ArXiv:1903.10153 [Cs]. http://arxiv.org/abs/1903.10153
  • Ye, Y., Tulsiani, S., & Gupta, A. (2021). Shelf-supervised mesh prediction in the wild. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 8839–8848). https://doi.org/10.1109/CVPR46437.2021.00873
  • Yu, A., Ye, V., Tancik, M., & Kanazawa, A. (2021). pixelNerf: Neural radiance fields from one or few images. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 4576–4585). https://doi.org/10.1109/CVPR46437.2021.00455
  • Zhou, Y., Liu, S., & Ma, Y. (2021). NeRD: Neural 3D reflection symmetry detector. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 15935–15944). https://doi.org/10.1109/CVPR46437.2021.01568