131
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effectiveness of animated choropleth and proportional symbol cartograms for epidemiological dashboards

ORCID Icon & ORCID Icon
Pages 330-346 | Received 30 Sep 2022, Accepted 20 Sep 2023, Published online: 02 Nov 2023

References

  • Aylin, P., Maheswaran, R., Wakefield, J., Cockings, S., Jarup, L., Arnold, R., Wheeler, G., & Elliott, P. (1999). A national facility for small area disease mapping and rapid initial assessment of apparent disease clusters around a point source: The UK small area health statistics unit. Journal of Public Health Medicine, 21(3), 289–298. https://doi.org/10.1093/pubmed/21.3.289
  • Beale, L., Abellan, J. J., Hodgson, S., & Jarup, L. (2008). Methodologic issues and approaches to spatial epidemiology. Environmental Health Perspectives, 116(8), 1105–1110. https://doi.org/10.1289/ehp.10816
  • Berry, I., Soucy, J.-P., Tulte, A., & Fisman, D. (2020). Open access epidemiologic data and an interactive dashboard to monitor the COVID-19 outbreak in Canada. Canadian Medical Association Journal (CMAJ), 192(15), E420. https://doi.org/10.1503/cmaj.75262
  • Boscoe, F., & Pickle, L. (2003). Choosing geographic units for choropleth rate maps, with an emphasis on public health applications. Cartography and Geographic Information Science, 30(3), 237–248. https://doi.org/10.1559/152304003100011171
  • Bostock, M., Oglevetsky, V. and Heer, J. (2011). D³ data-driven documents. IEEE Transactions on Visualization and Computer Graphics, 17(12), 2301–2309. https://doi.org/10.1109/TVCG.2011.185
  • Boulos, M. K., & Geraghty, E. (2020). Geographical tracking and mapping of coronavirus disease COVID-19/severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic and associated events around the world: How 21st century GIS technologies are supporting the global fight against outbreaks and epidemics.
  • Centers for Disease Control and Prevention (CDC) Geography and Geospatial Science Working Group (GeoSWG). (2012). Cartographic guidelines for public health. Retrieved April 22, 2021, from https://www.cdc.gov/dhdsp/maps/GISX/resources/Cartographic_Guidelines.pdf
  • Clayton, D., & Kaldor, J. (1987). Empirical Bayes estimates of age-standardized relative risks for use in disease mapping. Biometrics, 43(3), 671–681. https://doi.org/10.2307/2532003
  • Cybulski, P., & Medyńska-Gulij, B. (2018). Cartographic redundancy in reducing change blindness in detecting extreme values in spatio-temporal maps. ISPRS International Journal of Geo-Information, 7(1), 8. https://doi.org/10.3390/ijgi7010008
  • Dong, E., Du, H., & Gardner, L. (2020). An interactive web-based dashboard to track COVID-19 in real time. The Lancet Infectious Diseases, 20(5), 533–534. https://doi.org/10.1016/S1473-3099(20)30120-1
  • Dorling, D., & Openshaw, S. (1992). Using computer animation to visualize space-time patterns. Environment and Planning B: Planning and Design, 19(6), 639–650. https://doi.org/10.1068/b190639
  • Duncan, I. K., Tingsheng, S., Perrault, S. T., & Gastner, M. T. (2021). Task-based effectiveness of interactive contiguous area cartograms. IEEE Transactions on Visualization and Computer Graphics, 27(2), 2136–2152. https://doi.org/10.1109/TVCG.2020.3041745
  • Elliott, P., & Wartenberg, D. (2004). Spatial epidemiology: Current approaches and future challenges. Environmental Health Perspectives, 112(9), 998–1006. https://doi.org/10.1289/ehp.6735
  • Elmer, M. E. (2013, August 25–30). Symbol considerations for bivariate thematic maps. In Proceedings of the 26th International Cartographic Conference, Dresden, Germany.
  • Fabrikant, S. I., & Goldsberry, K. (2005). Thematic relevance and perceptual salience of dynamic geovisualization displays. Proceedings, 22th ICA/ACI International Cartographic Conference, A Coruña, Spain.
  • Fabrikant, S. I., Rebich-Hespanha, S., Andrienko, N., Andrienko, G., & Montello, D. R. (2008). Novel method to measure inference affordance in static small-multiple map displays representing dynamic processes. The Cartographic Journal, 45(3), 201–215. https://doi.org/10.1179/000870408X311396
  • Fareed, N., Swoboda, C. M., Chen, S., Potter, E., Wu, D. T. Y., & Sleck, C. J. (2021). U.S. COVID-19 state government public dashboards: An expert review. Applied Clinical Informatics, 12(2), 208–221. https://doi.org/10.1055/s-0041-1723989
  • Field, K. (2020, February 25). Mapping coronavirus, responsibly. ArcGis Blog. Retrieved April 10, 2021, from https://www.esri.com/arcgis-blog/products/product/mapping/mapping-coronavirus-responsibly/
  • Fish, C., Goldsberry, K. P., & Battersby, S. (2011). Change blindness in animated choropleth maps: An empirical study. Cartography and Geographic Information Science, 38(4), 350–362. https://doi.org/10.1559/15230406384350
  • Forster, F. (1966). Use of a demographic base map for the presentation of areal data in epidemiology. British Journal of Preventative and Social Medicine, 20(4), 165–171. https://doi.org/10.1136/jech.20.4.165
  • Gastner, M. T., & Newman, M. E. J. (2004). Diffusion-based method for producing density-equalizing maps. PNAS, 101(20), 7499–7504.
  • Gastner, M. T., Seguy, V., & More, P. (2018). Fast flow-based algorithm for creating density-equalizing map projections. PNAS, 115(10), E2156–E2164.
  • Geospatial @ UCSF. (2020). Mapping the coronavirus (blog posted Mar 3, 2020). Retrieved May 17, 2021, from https://maps.ucsf.edu/news/mapping-coronavirus
  • Gillihan, A. F. (1927). Population maps. American Journal of Public Health, 17(4), 316–319.
  • Griffin, A. L., MacEachren, A. M., Hardisty, F., Steiner, E., & Li, B. (2006). A comparison of animated maps with static small-multiple maps for visually identifying space-time clusters. Annals of the Association of American Geographers, 96(4), 740–753. https://doi.org/10.1111/j.1467-8306.2006.00514.x
  • Hannen, T. (2020, May 7). Coronavirus coxcombs to waffles: What Florence Nightingale can teach us about the best ways to map the spread of disease. Interview of Kenneth Field by Alan Smith. Financial Times. Retrieved April 20, 2021, from https://www.ft.com/video/18bce4f1-83a5-4a6a-afff-e477c9b2ba45
  • Harrower, M. (2003). Tips for designing effective animated maps. Cartographic Perspectives, 44(44), 63–65. https://doi.org/10.14714/CP44.516
  • Harrower, M. (2007). Unclassed animated choropleth maps. The Cartographic Journal, 44(4), 313–320. https://doi.org/10.1179/000870407X241863
  • Harrower, M., Fabrikant S. (2008). The role of map animation in geographic visualization. 49–65.
  • Juergens, C. (2020). Trustworthy COVID-19 mapping: Geo-spatial data literacy aspects of choropleth maps. Journal of Cartography and Geographic Information, 70(4), 155–161. https://doi.org/10.1007/s42489-020-00057-w
  • Kantor, M. (2020). The Science and scientist behind the John Hopkins coronavirus dashboard. Interview with Lauren Gardner. Podcast. Retrieved March 27, 2021, from https://www.esri.com/about/newsroom/podcast/the-science-and-scientist-behind-the-johns-hopkins-coronavirus-dashboard/
  • Koivisto, M., & Revonsuo, A. (2003). An ERP study of change detection, change blindness, and visual awareness. Psychophysiology, 40(3), 423–429.
  • Kronenfeld, B. J. (2018). Manual construction of continuous cartograms through mesh transformation. Cartography and Geographic Information Science, 45(1), 76–94. https://doi.org/10.1080/15230406.2016.1270775
  • Kronenfeld, B. J., & Wong, D. W. S. (2017). Visualizing statistical significance of disease clusters using cartograms. International Journal of Health Geographics, 16(1), 19. https://doi.org/10.1186/s12942-017-0093-9
  • Lan, Y., Desjardins, M. R., Hohl, A., & Delmelle, E. (2021). Geovisualization of COVID-19: State of the art and opportunities. Cartographica: The International Journal for Geographic Information and Geovisualization, 56(1), 2–13. https://doi.org/10.3138/cart-2020-0027
  • MacNab, Y. C., Farrell, P. J., Gustafson, P., & Wen, S. (2004). Estimation in Bayesian disease mapping. Biometrics, 60(4), 865–873. https://doi.org/10.1111/j.0006-341X.2004.00241.x
  • Merrill, D. W., Selvin, S., Close, E. R., & Holmes, H. H. (1996). Use of density equalizing map projections (DEMP) in the analysis of childhood cancer in four California counties. Statistics in Medicine, 15(17), 1837–1848. https://doi.org/10.1002/(SICI)1097-0258(19960915)15:17<1837:AID-SIM395>3.0.CO;2-E
  • Milner, G. (2020). Creating the dashboard for the pandemic. ArcUser, summer, 56–59.
  • Mooney, P., & Juhász, L. (2020). Mapping COVID-19: How web-based maps contribute to the infodemic. Dialogues in Human Geography, 10(2), 265–270. https://doi.org/10.1177/2043820620934926
  • Moon, S., Kim, E.-K., & Hwang, C.-S. (2014). Effects of spatial distribution on change detection in animated choropleth maps. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 32(6), 571–580. https://doi.org/10.7848/ksgpc.2014.32.6.571
  • Nelson, E. S. (1999). Using selective attention theory to design bivariate point symbols. Cartographic Perspectives, 32(1), 6–28.
  • Nguyen, K. T., Hatzenbuehler, M. L., & Goldstein, N. D. (2019). Potential relationship between HIV criminalization and structural stigma related to sexual orientation in the United States. Journal of Acquired Immune Deficiency Syndrome, 80(5), e106–108. https://doi.org/10.1097/QAI.0000000000001961
  • Nusrat, A., Alam, M. J., Scheidegger, C., & Kobourov, S. (2018). Cartogram visualization for bivariate geo-statistical data. IEEE Transactions on Visualization and Computer Graphics, 24(10), 2675–2688. https://doi.org/10.1109/TVCG.2017.2765330
  • Rensink, R. A. (2002). Internal vs. external information in visual perception. In Proceedings of the 2nd international symposium on Smart graphics, Hawthorne, New York, USA.
  • Reyes Nuñez, J. J., & Juhász, B. (2015). Hungarian survey on the use of cartograms in school cartography. International Journal of Cartography, 1(1), 5–17. https://doi.org/10.1080/23729333.2015.1055538
  • Rezk, A. A., & Hendawy, M. (2023). Informative cartographic communication: A framework to evaluate the effects of map types on users’ interpretation of COVID-19 geovisualizations. Cartography and Geographic Information Science, 1–18. https://doi.org/10.1080/15230406.2022.2155249
  • Roth, R. E. (2013). Interactive maps: What we know and what we need to know. Journal of Spatial Information Science, 6(6), 59–115. https://doi.org/10.5311/JOSIS.2013.6.105
  • Sack, D. E., Gange, S. J., Althoff, K. N., Pettit, A. C., Kheshti, A. N., Ransby, I. S., Nelson, J. J., Turner, M. M., Sterling, T. R., & Rebeiro, P. F. (2022). Visualizing the geography of HIV observational cohorts with density-adjusted cartograms. Journal of Acquired Immune Deficiency Syndrome, 89(5), 473–480. https://doi.org/10.1097/QAI.0000000000002903
  • Schiffmann, A., & Conlon, D. (2020). Retrieved February 8, 2021, from nCoV2019.live
  • Soetens, L., Hahné, S., & Wallinga, J. (2017). Dot map cartograms for detection of infectious disease outbreaks: An application to Q fever, the Netherlands and Pertussis, Germany. Euro Surveillance, 22(26), ii=30562. https://doi.org/10.2807/1560-7917.ES.2017.22.26.30562
  • Sui, D. Z., & Holt, J. B. (2008). Visualizing and analysing public-health data using value-by-area cartograms: Toward a new synthetic framework. Cartographica: The International Journal for Geographic Information and Geovisualization, 43(1), 3–20. https://doi.org/10.3138/carto.43.1.3
  • Sun, S. (2013). An optimized rubber-sheet algorithm for continuous area cartograms. The Professional Geographer, 65(1), 16–30. https://doi.org/10.1080/00330124.2011.639613
  • Thorpe, A., Scherer, A. M., Han, P. K., Burpo, N., Shaffer, V., Scherer, L., & Fagerlin, A. (2021). Exposure to common geographic COVID-19 prevalence maps and public knowledge, risk perceptions, and behavioral intentions. JAMA Network Open, 4(1), e2033538. https://doi.org/10.1001/jamanetworkopen.2020.33538
  • Tobler, W. (2004). Thirty five years of computer cartograms. Annals of the Association of American Geographers, 94(1), 58–73. https://doi.org/10.1111/j.1467-8306.2004.09401004.x
  • Tran, N. K., & Goldstein, N. D. (2019). Jointly representing geographic exposure and outcome data using cartograms. American Journal of Epidemiology, 188(9), 1751–1750. https://doi.org/10.1093/aje/kwz141
  • Traun, C., Schreyer, ML, Wallentin, G. (2021). Empirical insights from a study on outlier preserving value generalization in animated choropleth maps. ISPRS International Journal of Geo-Information, 10(4), 208.
  • Tversky, B., Morrison, J. B., & Betrancourt, M. (2002). Animation: Can it facilitate? International Journal of Human-Computer Studies, 57(4), 247–262. https://doi.org/10.1006/ijhc.2002.1017
  • Wallace, J. W. (1926). Population map for health officers. American Journal of Public Health, 14(10), 1023.
  • Yau, Y. C., & Gastner, M. T. (2021). Mapping the inequality of the global distribution of seasonal influenza vaccine. Environment & Planning A: Economy & Space, 53(6), 1249–1252. https://doi.org/10.1177/0308518X21998356
  • Yoo, K.-I., & Kronenfeld, B. (2020). An evaluation of COVID-19 dashboards from cartographic and epidemiological perspectives. Proceedings, AutoCarto 2020. https://cartogis.org/autocarto/autocarto-2020/program/

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.