188
Views
2
CrossRef citations to date
0
Altmetric
Research Article

MultiLineStringNet: a deep neural network for linear feature set recognition

ORCID Icon, ORCID Icon & ORCID Icon
Pages 114-129 | Received 30 Dec 2022, Accepted 04 Sep 2023, Published online: 14 Nov 2023

References

  • Ai, T. (2021). Some thoughts on deep learning enabling cartography. Acta Geodaetica et Cartographica Sinica, 50(9), 1170–1182. https://doi.org/10.11947/j.AGCS.2021.20210091
  • Balboa, J. L. G., & López, F. J. A. (2008). Generalization-oriented road line classification by means of an artificial neural network. Geoinformatica, 12(3), 289–312. https://doi.org/10.1007/s10707-007-0026-z
  • Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.
  • Brassel, K. E., & Weibel, R. (1988). A review and conceptual framework of automated map generalization. International Journal of Geographical Information Systems, 2(3), 229–244. https://doi.org/10.1080/02693798808927898
  • Clark, M. W. (1981). Quantitative shape analysis: A review. Journal of the International Association for Mathematical Geology, 13(4), 303–320. https://doi.org/10.1007/BF01031516
  • Courtial, A., El Ayedi, A., Touya, G., & Zhang, X. (2020). Exploring the potential of deep learning segmentation for mountain roads generalisation. ISPRS International Journal of Geo-Information, 9(5), 338. https://doi.org/10.3390/ijgi9050338
  • Courtial, A., Touya, G., & Zhang, X. (2022). Constraint-based evaluation of map images generalized by deep learning. Journal of Geovisualization and Spatial Analysis, 6(1), 13. https://doi.org/10.1007/s41651-022-00104-2
  • Courtial, A., Touya, G., & Zhang, X. (2023). Deriving map images of generalised mountain roads with generative adversarial networks. International Journal of Geographical Information Science, 37(3), 499–528. https://doi.org/10.1080/13658816.2022.2123488
  • Du, S., Luo, L., Cao, K., & Shu, M. (2016). Extracting building patterns with multilevel graph partition and building grouping. ISPRS Journal of Photogrammetry and Remote Sensing, 122, 81–96. https://doi.org/10.1016/j.isprsjprs.2016.10.001
  • Feng, Y., Thiemann, F., & Sester, M. (2019). Learning cartographic building generalization with deep convolutional neural networks. ISPRS International Journal of Geo-Information, 8(6), 258. https://doi.org/10.3390/ijgi8060258
  • Harrie, L., Oucheikh, R., Nilsson, Å., Oxenstierna, A., Cederholm, P., Wei, L., Richter, K. F., & Olsson, P. (2022). Label placement challenges in city wayfinding map production—Identification and possible solutions. Journal of Geovisualization and Spatial Analysis, 6(1), 16. https://doi.org/10.1007/s41651-022-00115-z
  • Heinzle, F., Anders, K. H., & Sester, M. (2006). Pattern recognition in road networks on the example of circular road detection. In M. Raubal, H. J. Miller, A. U. Frank, & M. F. Goodchild (Eds.), Geographic information science (pp. 153–167). Springer. GIScience 2006. Lecture Notes in Computer Science, 4197. https://doi.org/10.1007/11863939_11.
  • He, H., Qian, H., Xie, L., & Duan, P. (2018). Interchange recognition method based on CNN. Acta Geodaetica et Cartographica Sinica, 47(3), 385–395. https://doi.org/10.11947/j.AGCS.2018.20170265
  • He, X., Zhang, X., & Xin, Q. (2018). Recognition of building group patterns in topographic maps based on graph partitioning and random forest. ISPRS Journal of Photogrammetry and Remote Sensing, 136, 26–40. https://doi.org/10.1016/j.isprsjprs.2017.12.001
  • Jung, K., Shin, J. Y., & Park, D. (2019). A new approach for river network classification based on the beta distribution of tributary junction angles. Journal of Hydrology, 572, 66–74. https://doi.org/10.1016/j.jhydrol.2019.02.041
  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539
  • Li, Z. (2006). Algorithmic foundation of multi-scale spatial representation. CRC Press.
  • Li, Q., Fan, H., Luan, X., Yang, B., & Liu, L. (2014). Polygon-based approach for extracting multilane roads from OpenStreetMap urban road networks. International Journal of Geographical Information Science, 28(11), 2200–2219. https://doi.org/10.1080/13658816.2014.915401
  • Liu, M., He, G., & Long, Y. (2021). A semantics-based trajectory segmentation simplification method. Journal of Geovisualization and Spatial Analysis, 5(2), 19. https://doi.org/10.1007/s41651-021-00088-5
  • Liu, C., Hu, Y., Li, Z., Xu, J., Han, Z., & Guo, J. (2021). TriangleConv: A deep point convolutional network for recognizing building shapes in map space. ISPRS International Journal of Geo-Information, 10(10), 687. https://doi.org/10.3390/ijgi10100687
  • Li, P., Yan, H., & Lu, X. (2023). A siamese neural network for learning the similarity metrics of linear features. International Journal of Geographical Information Science, 37(3), 684–711. https://doi.org/10.1080/13658816.2022.2143505
  • Li, C., Zhang, H., Wu, P., Yin, Y., & Liu, S. (2020). A complex junction recognition method based on GoogLeNet model. Transactions in GIS, 24(6), 1756–1778. https://doi.org/10.1111/tgis.12681
  • Mackaness, W. A., & Ruas, A. (2007). Chapter 5-evaluation in the map generalisation process. In W. A. Mackaness, A. Ruas, & L. T. Sarjakoski (Eds.), Generalisation of geographic information (pp. 89–111). International Cartographic Association; Elsevier Science B.V. https://doi.org/10.1016/B978-008045374-3/50007-7
  • Mai, G., Jiang, C., Sun, W., Zhu, R., Xuan, Y., Cai, L., Janowicz, K., Ermon, S., & Lao, N. (2023). Towards general-purpose representation learning of polygonal geometries. Geoinformatica, 27(2), 289–340. https://doi.org/10.1007/s10707-022-00481-2
  • Ma, L., Yan, H., Wang, Z., Liu, B., & Lv, W. (2017). Geometry shape measurement of building surface elements based on self-supervised machine learning. Science of Surveying & Mapping, 42(12), 171–177. https://doi.org/10.16251/j.cnki.1009-2307.2017.12.029
  • Qi, C. R., Su, H., Kaichun, M., & Guilbas, L. J. (2017). PointNet: Deep learning on point sets for 3D classification and segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 77–85). https://doi.org/10.1109/CVPR.2017.16
  • Qi, C. R., Yi, L., Su, H., & Guilbas, L. J. (2017). PointNet++: Deep hierarchical feature learning on point sets in a metric space. In Proceedings of International Conference on Neural Information Processing Systems (pp. 5105–5114). https://doi.org/10.48550/arXiv.1706.02413
  • Regnauld, N. (2001). Contextual building typification in automated map generalization. Algorithmica, 30(2), 312–333. https://doi.org/10.1007/s00453-001-0008-8
  • Resnik, M. D. (1981). Mathematics as a science of patterns: Ontology and reference. Noûs, 15(4), 529–550. https://doi.org/10.2307/2214851
  • Samsonov, T. E., & Yakimova, O. P. (2017). Shape-adaptive geometric simplification of heterogeneous line dataset. International Journal of Geographical Information Science, 31(8), 1485–1520. https://doi.org/10.1080/13658816.2017.1306864
  • Sayidov, A., Weibel, R., & Leyk, S. (2022). Recognition of group patterns in geological maps by building similarity networks. Geocarto International, 37(2), 607–626. https://doi.org/10.1080/10106049.2020.1730449
  • Sester, M. (2020). Cartographic generalization. Journal of Spatial Information Science, 21(21), 5–11. https://doi.org/10.5311/JOSIS.2020.21.716
  • Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information Processing & Management, 45(4), 427–437. https://doi.org/10.1016/j.ipm.2009.03.002
  • Szeliski, R. (2022). Computer vision: Algorithms and applications. Springer. https://doi.org/10.1007/978-3-030-34372-9
  • Touya, G., Zhang, X., & Lokhat, I. (2019). Is deep learning the new agent for map generalization? International Journal of Cartography, 5(2–3), 142–157. https://doi.org/10.1080/23729333.2019.1613071
  • van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine Learning Research, 9(86), 2579–2605. https://jmlr.org/papers/v9/vandermaaten08a.html
  • Veer, R. V., Bloem, P., & Folmer, E. (2018). Deep learning for classification tasks on geospatial vector polygons. arXiv: preprint. https://doi.org/10.48550/arXiv.1806.03857
  • Wang, M., Ai, T., Yan, X., & Xiao, Y. (2020). Grid pattern recognition in road networks based on graph convolution network model. Geomatics and Information Science of Wuhan University, 45(12), 1960–1969. https://doi.org/10.13203/j.whugis20200022
  • Wang, Z., & Müller, J. C. (1998). Line generalization based on analysis of shape characteristics. Cartography and Geographic Information Systems, 25(1), 3–15. https://doi.org/10.1559/152304098782441750
  • Wentz, E. A. (1997). Shape analysis in GIS. In Proceedings of Auto-Carto 13, Seattle, Washington (pp. 204–213). American Society for Photogrammetry and Remote Sensing and American Congress on Surveying and Mapping, Bethesda, Maryland. https://cartogis.org/docs/proceedings/archive/auto-carto-13/pdf/shape-analysis-hi-gis.pdf
  • Xu, Y., Xie, Z., Chen, Z., & Wu, L. (2017). Shape similarity measurement model for holed polygons based on position graphs and Fourier descriptors. International Journal of Geographical Information Science, 31(2), 253–279. https://doi.org/10.1080/13658816.2016.1192637
  • Xu, Y., Xie, Z., Chen, Z., & Xie, M. (2021). Measuring the similarity between multipolygons using convex hulls and position graphs. International Journal of Geographical Information Science, 35(5), 847–868. https://doi.org/10.1080/13658816.2020.1800016
  • Xu, Y., Xie, Z., Wu, L., & Chen, Z. (2019). Multilane roads extracted from the OpenStreetMap urban road network using random forests. Transactions in GIS, 23(2), 224–240. https://doi.org/10.1111/tgis.12514
  • Yan, H. (2019). Description approaches and automated generalization algorithms for groups of map objects. Springer. https://doi.org/10.1007/978-981-13-3678-2
  • Yan, X., Ai, T., Yang, M., & Tong, X. (2021). Graph convolutional autoencoder model for the shape coding and cognition of buildings in maps. International Journal of Geographical Information Science, 35(3), 490–512. https://doi.org/10.1080/13658816.2020.1768260
  • Yan, X., Ai, T., Yang, M., & Yin, H. (2019). A graph convolutional neural network for classification of building patterns using spatial vector data. ISPRS Journal of Photogrammetry and Remote Sensing, 150, 259–273. https://doi.org/10.1016/j.isprsjprs.2019.02.010
  • Yang, W. (2008). Identify building patterns. In J. Chen, J. Jiang, & W. Kainz (Eds.), The international archives of the photogrammetry, remote sensing and spatial information sciences, Bejing, China (Vol. XXXVII Part B2, pp. 391–398). https://www.isprs.org/proceedings/XXXVII/congress/2_pdf/3_WG-II-3/04.pdf
  • Yang, M., Jiang, C., Yan, X., Ai, T., Cao, M., & Chen, W. (2022). Detecting interchanges in road networks using a graph convolutional network approach. International Journal of Geographical Information Science, 36(6), 1119–1139. https://doi.org/10.1080/13658816.2021.2024195
  • Yang, B., Luan, X., & Li, Q. (2010). An adaptive method for identifying the spatial patterns in road networks. Computers, Environment and Urban Systems, 34(1), 40–48. https://doi.org/10.1016/j.compenvurbsys.2009.10.002
  • Yan, H., Shen, Y., & Li, J. (2016). Approach to calculating spatial similarity degrees of the same river basin networks on multi-scale maps. Geocarto International, 31(7), 765–782. https://doi.org/10.1080/10106049.2015.1076063
  • Yu, W., Ai, T., Liu, P., & Cheng, X. (2017). The analysis and measurement of building patterns using texton co-occurrence matrices. International Journal of Geographical Information Science, 31(6), 1079–1100. https://doi.org/10.1080/13658816.2016.1265121
  • Yu, H., Ai, T., Yang, M., Huang, L., & Gao, A. (2023). Automatic segmentation of parallel drainage patterns supported by a graph convolution neural network. Expert Systems with Applications, 211, 118639. https://doi.org/10.1016/j.eswa.2022.118639
  • Yu, H., Ai, T., Yang, M., Huang, L., & Yuan, J. (2022). A recognition method for drainage patterns using a graph convolutional network. International Journal of Applied Earth Observation and Geoinformation, 107, 102696. https://doi.org/10.1016/j.jag.2022.102696
  • Zhang, X., Ai, T., Stoter, J., Kraak, M. J., & Molenaar, M. (2013). Building pattern recognition in topographic data: Examples on collinear and curvilinear alignments. Geoinformatica, 17(1), 1–33. https://doi.org/10.1007/s10707-011-0146-3
  • Zhang, C., & Atkinson, P. M. (2016). Novel shape indices for vector landscape pattern analysis. International Journal of Geographical Information Science, 30(12), 2442–2461. https://doi.org/10.1080/13658816.2016.1179313
  • Zhang, L., Deng, H., Chen, D., & Wang, Z. (2013). A spatial cognition-based urban building clustering approach and its applications. International Journal of Geographical Information Science, 27(4), 721–740. https://doi.org/10.1080/13658816.2012.700518
  • Zhang, L., & Guilbert, E. (2013). Automatic drainage pattern recognition in river networks. International Journal of Geographical Information Science, 27(12), 2319–2342. https://doi.org/10.1080/13658816.2013.802794
  • Zhang, L., & Guilbert, E. (2017). A genetic algorithm for tributary selection with consideration of multiple factors. Transactions in GIS, 21(2), 332–358. https://doi.org/10.1111/tgis.12205
  • Zhao, R., Ai, T., Yu, W., He, Y., & Shen, Y. (2020). Recognition of building group patterns using graph convolutional network. Cartography and Geographic Information Science, 47(5), 400–417. https://doi.org/10.1080/15230406.2020.1757512
  • Zhou, Q., & Li, Z. (2015). Experimental analysis of various types of road intersections for interchange detection. Transactions in GIS, 19(1), 19–41. https://doi.org/10.1111/tgis.12077

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.