218
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Using machine learning and data enrichment in the selection of roads for small-scale maps

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 60-78 | Received 17 Jan 2023, Accepted 08 Nov 2023, Published online: 30 Nov 2023

References

  • Benz, S., & Weibel, R. (2014). Road network selection for medium scales using an extended stroke-mesh combination algorithm. Cartography and Geographic Information Science, 41(4), 323–339. https://doi.org/10.1080/15230406.2014.928482
  • Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.
  • Chen, J., Hu, Y., Li, Z., Zhao, R., & Meng, L. (2009). Selective omission of road features based on mesh density for automatic map generalization. International Journal of Geographical Information Science, 23(8), 1013–1032. https://doi.org/10.1080/13658810802070730
  • Courtial, A., El Ayedi, A., Touya, G., & Zhang, X. (2020). Exploring the potential of deep learning segmentation for mountain roads generalisation. ISPRS International Journal of Geo-Information, 9(5), 338. https://doi.org/10.3390/ijgi9050338
  • Courtial, A., Touya, G., & Zhang, X. (2022). Constraint‑based evaluation of map images generalized by deep learning. Journal of Geovisualization and Spatial Analysis, 6(13). https://doi.org/10.1007/s41651-022-00104-2
  • Courtial, A., Touya, G., & Zhang, X. (2023). Deriving map images of generalised mountain roads with generative adversarial networks. International Journal of Geographical Information Science, 37(3), 499–528. https://doi.org/10.1080/13658816.2022.2123488
  • Flach, P. (2012). Machine learning. The art and science of algorithms that make sense of data. Cambridge University Press.
  • García-Balboa, J. L., & Ariza-López, F. J. (2008). Generalization-oriented road line classification by means of an artificial neural network. Geoinformatica, 12(3), 289–312. https://doi.org/10.1007/s10707-007-0026-z
  • GUGiK. (2011). Regulation of the Ministry of the interior from 17 of November 2011 on the topographic objects database and general objects database as well as standard cartographic products. Head Office of Geodesy and Cartography Guidelines.
  • Hamilton, W. L., Ying, R., & Leskovec, J. (2017). Inductive representation learning on large graphs. Proceedings of the 31st International Conference on Neural Information Processing Systems, 30, 1025–1035. https://doi.org/10.48550/arXiv.1706.02216
  • Han, Y., Wang, Z., Lu, X., & Hu, B. (2020). Application of AHP to road selection. ISPRS International Journal of Geo-Information, 9(2), 86. https://doi.org/10.3390/ijgi9020086
  • Hastie, T., Tibshirani, R., & Friedman, J. H. (2009). The elements of statistical learning: Data mining, inference, and prediction. Springer.
  • Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4700–4708. https://doi.org/10.1109/CVPR.2017.243
  • Jepsen, S. T., Jensen, C. S., & Nielsen, T. D. (2022). Relational fusion networks: Graph convolutional networks for road networks. IEEE Transactions on Intelligent Transportation Systems, 23(1), 418–429. https://doi.org/10.1109/TITS.2020.3011799
  • Jiang, B., & Claramunt, C. A. (2004). A structural approach to the model generalization of an urban street network. GeoInformatica, 8(2), 157–171. https://doi.org/10.1023/B:GEIN.0000017746.44824.70
  • Jiang, B., & Liu, C. (2009). Street-based topological representations and analyses for predicting traffic flow in GIS. International Journal of Geographical Information Science, 23(9), 1119–1137. https://doi.org/10.1080/13658810701690448
  • Karsznia, I., & Sielicka, K. (2020). When traditional selection fails: How to improve settlement selection for small-scale maps using Machine learning. ISPRS International Journal of Geo-Information, 9(4), 230. https://doi.org/10.3390/ijgi9040230
  • Karsznia, I., Sielicka, K., & Weibel, R. (2020). Optimising road selection for small-scale maps using decision tree-based models. AutoCarto 2020 Where Next: Proceedings of the 23rd International Research Symposium on Cartography and GIScience. Cartography and Geographic Information Society.
  • Karsznia, I., & Weibel, R. (2018). Improving settlement selection for small-scale maps using data enrichment and machine learning. Cartography and Geographic Information Science, 45(2), 111–127. https://doi.org/10.1080/15230406.2016.1274237
  • Karsznia, I., Wereszczyńska, K., & Weibel, R. (2022). Make it simple: Effective road selection for small-scale map design using decision-tree-based models. ISPRS International Journal of Geo-Information, 11(8), 457. https://doi.org/10.3390/ijgi11080457
  • Mackaness, W. A. (1995). Analysis of urban road networks to support cartographic generalization. Cartography and Geographic Information Science, 22(4), 306–316. https://doi.org/10.1559/152304095782540267
  • Marshland, S. (2015). Machine learning. An algorithm perspective. CRC Press, Taylor & Francis.
  • Mitchell, T. M. (1997). Machine learning: An algorithmic perspective. CRC Press.
  • Murphy, K. P. (2012). Machine learning. A probabilistic perspective. MIT Press.
  • Mustière, S. (2005). Cartographic generalization of roads in a local and adaptive approach: A knowledge acquisition problem. International Journal of Geographical Information Science, 19(8–9), 937–955. https://doi.org/10.1080/13658810509161245
  • Mutasa, S., Sun, S., & Ha, R. (2020). Understanding artificial intelligence based radiology studies: What is overfitting? Clinical Imaging, 65, 96–99. https://doi.org/10.1016/j.clinimag.2020.04.025
  • Porta, S., Crucitti, P., & Latora, V. (2006). The network analysis of urban streets: A dual approach. Physica A: Statistical Mechanics and its Applications, 369(2), 853–866. https://doi.org/10.1016/j.physa.2005.12.063
  • RapidMine 9. (2019). Operator reference manual. Retrieved December 19, 2022, from https://docs.rapidminer.com/latest/studio/operators/rapidminer-studio-operator-reference.pdf
  • Robinson, G. J. (1995). A hierarchical top-down bottom-up approach to topographic map generalization. In J. C. Müller, J. P. Lagrange, & R. Weibel (Eds.), GIS and generalisation: Methodology and practice (pp. 235–246). Taylor & Francis.
  • Sammut, C., & Webb, G. I. (2011). Encyclopedia of machine learning. Springer.
  • Stanislawski, L. V., Buttenfield, B. P., Bereuter, P., Savino, S., & Brewer, C. A. (2014). Generalization operators. In D. Burghardt, C. Duchêne, & W. Mackaness (Eds.), Abstracting geographic information in a data rich world: Methodologies and applications of map generalisation (pp. 157–196). Springer International.
  • Thomson, R. C. (2006). The “stroke” concept in geographic network generalization and analysis. In A. Riedl, W. Kainz, & G. Elmes (Eds.), Progress in spatial data handling (pp. 681–697). Springer.
  • Thomson, R. C., & Richardson, D. E. (1999). The ‘good continuation’ principle of perceptual organization applied to the generalization of road networks. Proceedings of the 19th International Cartographic Conference and 11th General Assembly of ICA, 1215–1223. International Cartographic Association.
  • Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017, April 30–May 3). Graph attention networks. 6th International Conference on Learning Representations. arXivLabs. https://arxiv.org/abs/1710.10903
  • Weiss, R., & Weibel, R. (2014). Road network selection for small-scale maps using an improved centrality-based algorithm. Journal of Spatial Information Science, 9(9), 71–99. https://doi.org/10.5311/JOSIS.2014.9.166
  • Yu, W., Zhang, Y., Ai, T., Guan, Q., Chen, Z., & Li, H. (2020). Road network generalization concerning traffic flow patterns. International Journal of Geographical Information, 34(1), 119–149. https://doi.org/10.1080/13658816.2019.1650936
  • Zhao, G. F., Yuan, S. W., & Yusheng, C. (2016). Analysis of complex network property and robustness of urban road network. Journal of Highway and Transportation Research and Development, 33, 119–124. https://doi.org/10.1155/2020/5875803
  • Zheng, J., Gao, Z., Ma, J., Shen, J., & Zhang, K. (2021). Deep graph convolutional networks for accurate automatic road network selection. ISPRS International Journal of Geo-Information, 10(11), 768. https://doi.org/10.3390/ijgi10110768
  • Zhou, Q., & Li, Z. (2012). A comparative study of various strategies to concatenate road segments into strokes for map generalization. International Journal of Geographical Information Science, 26(4), 691–715. https://doi.org/10.1080/13658816.2011.609990
  • Zhou, Q., & Li, Z. (2014). Use of artificial neural networks for selective omission in updating road networks. The Cartographic Journal, 51(1), 38–51. https://doi.org/10.1179/1743277413Y.0000000042
  • Zhou, Q., & Li, Z. (2017). A comparative study of various supervised learning approaches to selective omission in a road network. The Cartographic Journal, 54(3), 254–264. https://doi.org/10.1179/1743277414Y.0000000083

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.