1,053
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A feasibility study of applying generative deep learning models for map labeling

ORCID Icon & ORCID Icon
Pages 168-191 | Received 25 Oct 2022, Accepted 28 Nov 2023, Published online: 17 Jan 2024

References

  • Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., & Farhan, L. (2021). Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8(1). https://doi.org/10.1186/s40537-021-00444-8
  • Andrade, H. J. A., & Fernandes, B. J. T. (2020). Synthesis of satellite-like urban images from historical maps using conditional GAN. IEEE Geoscience and Remote Sensing Letters, 19, 1–4. https://doi.org/10.1109/lgrs.2020.3023170
  • Biederman, I. (1985). Human image understanding: Recent research and a theory. Computer Vision, Graphics and Image Processing, 32(1), 29–73. https://doi.org/10.1016/0734-189X(85)90002-7
  • Can, Y. S., Gerrits, P. J., & Kabadayi, M. E. (2021). Automatic detection of road types from the third military mapping survey of Austria Hungary historical map series with deep convolutional neural networks. Institute of Electrical and Electronics Engineers Access, 9, 62847–62856. https://doi.org/10.1109/ACCESS.2021.3074897
  • Courtial, A., El Ayedi, A., Touya, G., & Zhang, X. (2020). Exploring the potential of deep learning segmentation for mountain roads generalisation. ISPRS International Journal of Geo-Information, 9(5), 338. https://doi.org/10.3390/ijgi9050338
  • Deng, Y., Yang, J., Liang, C., & Jing, Y. (2021, May). Spd-linknet: Upgraded D-Linknet with strip pooling for road extraction. In IEEE International Geoscience and Remote Sensing Symposium IGARSS (pp. 2190–2193). https://doi.org/10.1109/IGARSS47720.2021.9553044.
  • Dhillon, A., & Verma, G. K. (2020). Convolutional neural network: A review of models, methodologies and applications to object detection. Progress in Artificial Intelligence, 9(2), 85–112. https://doi.org/10.1007/s13748-019-00203-0
  • Douglas, D. H., & Peucker, T. K. (1973). Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica: The International Journal for Geographic Information & Geovisualization, 10(2), 112–122. https://doi.org/10.3138/FM57-6770-U75U-7727
  • Ertz, O., Laurent, M., Rappo, D., Sae-Tang, A., & Taillard, E. (2009, July). PAL-A cartographic labelling library. Position IT, 56–61. Retrieved December 20, 2023, from http://www.gvsig.com/en/diffusion/articles/-/asset_publisher/wRekmJIM0uNH/content/pal-a-cartographic-labelling-library
  • Feng, Y., Thiemann, F., & Sester, M. (2019). Learning cartographic building generalization with deep convolutional neural networks. ISPRS International Journal of Geo-Information, 8(6), 258. https://doi.org/10.3390/ijgi8060258
  • Freeman, H. (1988). An expert system for the automatic placement of names on a geographic map. Information Sciences, 45(3), 367–378. https://doi.org/10.1016/0020-0255(88)90011-4
  • Gonzales, R. C., & Woods, R. E. (2018). Digital image processing (4th ed.). Pearson Education Limited. ISBN 9781292223049.
  • Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adversarial nets. In Z. Ghahramani (Ed.), International Conference on Neural Information Processing Systems, Montreal, Canada (pp. 2672–2680).
  • Harrie, L., Oucheikh, R., Nilsson, Å., Oxenstierna, A., Cederholm, P., Wei, L., Richter, K.-F., & Olsson, P. (2022). Label placement challenges in city wayfinding map production—identification and possible solutions. Journal of Geovisualization and Spatial Analysis, 6(1), 16. https://doi.org/10.1007/s41651-022-00115-z
  • Harrie, L., Stigmar, H., Koivula, T., & Lehto, L. (2004). An algorithm for icon placement on a real-time map. In P. Fisher (Ed.), Development in spatial data handling (pp. 493–507). Springer.
  • Haunert, J.-H., & Wolff, A. (2017). Beyond maximum independent set: an extended integer programming formulation for point labeling. ISPRS International Journal of Geo-Information, 6(11), 342. https://doi.org/10.3390/ijgi6110342
  • Imhof, E. (1975). Positioning names on maps. The American Cartographer, 2(2), 128–144. https://doi.org/10.1559/152304075784313304
  • Isola, P., Zhu, J.-Y., Zhou, T., & Efros, A. (2017). Image-to-image translation with conditional adversarial networks. In IEEE Conference on Computer Vision and Pattern Recognition. CVPR. https://doi.org/10.1109/cvpr.2017.632
  • Jones, C. B. (1989). Cartographic name placement with Prolog. IEEE Computer Graphics and Applications, 9(5), 36–47. https://doi.org/10.1109/38.35536
  • Kang, Y., Gao, S., & Roth, R. E. (2019). Transferring multiscale map styles using generative adversarial networks. International Journal of Cartography, 5(2–3), 115–141. https://doi.org/10.1080/23729333.2019.1615729
  • Kern, J. P., & Brewer, C. A. (2008). Automation and the map label placement problem: A comparison of two GIS implementations of label placement. Cartographic Perspectives, 60(60), 22–45. https://doi.org/10.14714/CP60.230
  • Klute, F., Li, G., Löffler, R., Nöllenburg, M., & Schmidt, M. (2019). Exploring semi-automatic map labeling. In Proceeding 27th SIGSPATIAL ACM (pp. 13–22).
  • Lan, T., Li, Z., Wang, J., Gong, C., & Ti, P. (2022). An ANNs-based method for automated labelling of schematic metro maps. ISPRS International Journal of Geo-Information, 11(1), 36. https://doi.org/10.3390/ijgi11010036
  • Lee, D., Liu, S., Gu, J., Liu, M. Y., Yang, M. H., & Kautz, J. (2018). Context-aware synthesis and placement of object instances. In S. Bengio (Ed.), Conference on Neural Information Processing Systems (32nd ed. pp. 10393–10403). Montreal, CANADA.
  • Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J., & Quillen, D. (2018). Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection. The International Journal of Robotics Research, 37(4–5), 421–436. https://doi.org/10.1177/0278364917710318
  • Li, Y., Sakamoto, M., Shinohara, T., & Satoh, T. (2020). Automatic label placement of area-features using deep learning. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B4-2020, 117–122. https://doi.org/10.5194/isprs-archives-xliii-b4-2020-117-2020
  • Ohri, K., & Kumar, M. (2021). Review on self-supervised image recognition using deep neural networks. Knowledge-Based Systems, 224, 107090. https://doi.org/10.1016/j.knosys.2021.107090
  • Pokonieczny, K., & Borkowska, S. (2019). Using artificial neural network for labelling polygon features in topographic maps. GeoScape, 13(2), 125–131. https://doi.org/10.2478/geosc-2019-0012
  • QGIS Development Team. (2022). QGIS 3.22 documentation. https://www.qgis.org/en/docs/index.html
  • Rylov, M., & Reimer, A. (2014). A comprehensive multi-criteria model for high cartographic quality point-feature label placement. Cartographica: The International Journal for Geographic Information & Geovisualization, 49(1), 52–68. https://doi.org/10.3138/carto.49.1.2137
  • Rylov, M., & Reimer, A. (2015). Improving label placement quality by considering basemap detail with a raster-based approach. Geoinformatica, 19(3), 463–486. https://doi.org/10.1007/s10707-014-0214-6
  • Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. In IEEE conference on computer vision and pattern recognition, Boston, USA (pp. 1–9). https://doi.org/10.1109/CVPR.2015.7298594
  • Touya, G., Zhang, X., & Lokhat, I. (2019). Is deep learning the new agent for map generalization? International Journal of Cartography, 5(2–3), 142–157. https://doi.org/10.1080/23729333.2019.1613071
  • Uhl, J. H., Leyk, S., Chiang, Y. Y., Duan, W., & Knoblock, C. A. (2020). Automated extraction of human settlement patterns from historical topographic map series using weakly supervised convolutional neural networks. Institute of Electrical and Electronics Engineers Access, 8, 6978–6996. https://doi.org/10.1109/ACCESS.2019.2963213
  • Van Dijk, S., Van Kreveld, M., Strijk, T., & Wolff, A. (2002). Towards an evaluation of quality for names placement methods. International Journal of Geographical Information Science, 16(7), 641–661. https://doi.org/10.1080/13658810210138742
  • Visvalingam, M., & Whyatt, J. D. (1993). Line generalisation by repeated elimination of points. The Cartographic Journal, 30(1), 46–51. https://doi.org/10.1179/caj.1993.30.1.46
  • Wood, C. H. (2000). A descriptive and illustrated guide for type placement on small scale maps. The Cartographic Journal, 37(1), 5–18. https://doi.org/10.1179/caj.2000.37.1.5
  • Yamamoto, M., & Lorena, L. A. (2005). A constructive genetic approach to point-feature cartographic label placement. In T. Ibaraki, K. Nonobe, & M. Yagiura (Eds.), Metaheuristics: Progress as real problem solvers (pp. 287–302). Springer.
  • Yoeli, P. (1972). The logic of automated map lettering. The Cartographic Journal, 9(2), 99–108. https://doi.org/10.1179/caj.1972.9.2.99
  • Yu, H., Ai, T., Yang, M., Huang, L., & Gao, A. (2023). Automatic segmentation of parallel drainage patterns supported by a graph convolution neural network. Expert Systems with Applications 211, 118639. ISSN: 0957-4174. https://doi.org/10.1016/j.eswa.2022.118639
  • Yu, H., Ai, T., Yang, M., Huang, L., & Yuan, J. (2022). A recognition method for drainage patterns using a graph convolutional network. International Journal of Applied Earth Observation and Geoinformation 107, 102696. ISSN: 1569-8432. https://doi.org/10.1016/j.jag.2022.102696
  • Zhang, Q., & Harrie, L. (2006). A real-time method of placing text and icon labels simultaneously. Cartography and Geographic Information Science, 33(1), 53–64. https://doi.org/10.1559/152304006777323127
  • Zhao, W., & Du, S. (2016). Spectral–spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach. IEEE Transactions on Geoscience and Remote Sensing, 54(8), 4544–4554. https://doi.org/10.1109/TGRS.2016.2543748
  • Zoraster, S. (1997). Practical results using simulated annealing for point feature label placement. Cartography and Geographic Information Systems, 24(4), 228–238. https://doi.org/10.1559/152304097782439259