74
Views
0
CrossRef citations to date
0
Altmetric
Scientific Communications

Mercury wet depositions study during plum rain, regular precipitations and near typhoon periods

, &

References

  • Ahn, M. C., Yi, S. M., Holsen, T. M., and Han, Y. J. 2011. Mercury wet deposition in rural Korea: concentrations and fluxes. Journal of Environmental Monitoring 13(10):2748–2754.[Mismatch
  • Bloom, N. S. 1992. On the chemical form of mercury in edible fish and marine invertebrate tissue. Canadian Journal of Fisheries and Aquatic Sciences 49(5):1010–1017.
  • Chen, L., Li, Y., Liu, C., Guo, L., and Wang, X. 2018. Wet deposition of mercury in Qingdao, a coastal urban city in China: Concentrations, fluxes, and influencing factors. Atmospheric Environment 174:204–213.
  • Choi, E. M., Kim, S. H., Holsen, T. M., and Yi, S. M. 2009. Total gaseous concentrations in mercury in Seoul, Korea: Local sources compared to long-range transport from China and Japan. Environmental Pollution (Barking, Essex : 1987) 157(3):816–822.
  • Connan, O., Maro, D., Hébert, D., Roupsard, P., Goujon, R., Letellier, B., et al. 2013. Wet and dry deposition of particles associated metals (Cd, Pb, Zn, Ni, Hg) in a rural wetland site, Marais Vernier, France. Atmospheric Environment 67:394–403.
  • Das, R., Wang, X., Khezri, B., Webster, R. D., Sikdar, P. K., and Datta, S. 2016. Mercury isotopes of atmospheric particle bound mercury for source apportionment study in urban Kolkata. India. Science of the Anthropocene 4:1. DOI: 10.12952/journal.elementa.000098.
  • Drenner, R. W., Chumchal, M. M., Jones, C. M., Lehmann, C. M. B., Gay, D. A., and Donato, D. I. 2013. Effects of mercury deposition and coniferous forests on the mercury contamination of fish in the South Central United States. Environmental Science & Technology 47(3):1274–1279.
  • Driscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J., and Pirrone, N. 2013. Mercury as a global pollutant: sources, pathways, and effects. Environmental Science & Technology 47(10):4967–4983.
  • Eom, S., Lee, H., Kim, J., Park, K., Kim, Y., Sheu, G. R., et al. 2021. Potential sources, scavenging processes, and source regions of mercury in the wet deposition of South Korea. The Science of the Total Environment 762:143934.
  • Fang, G. C., Lo C. T., Zhuang Y.. J., Kuo Y. C., Cho M. H. et al. 2016. Sources of ambient air particulates and Hg(p) pollutants at Freeway, Industrial, Thermal power plant F.I.T. characteristic sites. Environmental Earth Sciences. 75:103. DOI: 10.1007/s12665-015-5057-4.
  • Fang, G. C., Huang, W. C., Zhuang, Y. J., Huang, C. Y., Tsai, K. H., and Xiao, Y. F. 2018. Wet depositions of mercury during plum rain season in Taiwan. Environmental Geochemistry and Health 40(4):1061–1607.
  • Fang, G. C., Ni, S. C., Kao, C. L., Zhuang, Y. J., Li, K. X., and Liang, G. R. 2020. Mercury wet depositions study at suburban, agriculture and traffic sampling sites. Environmental Geochemistry and Health 43:235–245.
  • Fang, G. C., Basu, N., Nam, D. H., and Yang, I. L. 2009. Characterization of ambient air particulates and particulate mercury at Sha-Lu, Central Taiwan. Environmental Forensics 10(4):277–285.
  • Futsaeter, G., and Wilson, S. 2013. The UNEP global mercury assessment: sources, emissions and transport. E3S Web of Conferences 1:36001. DOI:.
  • Guentzel, J. L., Landing, W. M., Gill, G. A., and Pollman, C. D. 2001. Processes influencing rainfall deposition of mercury in Florida. Environmental Science & Technology 35:863–873.
  • Guo, J., Ram, K., Tripathee, L., Kang, S., Huang, J., Chen, P., et al. 2020. Study on mercury in PM10 at an urban site in the Central Indo-Gangetic plain: Seasonal variability and influencing factors. Aerosol and Air Quality Research 20:2729–2740.
  • Holmes, C. D., Krishnamurthy, N. P., Caffrey, J. M., Landing, W. M., Edgerton, E. S., Knapp, K. R., et al. 2016. Thunderstorms increase mercury wet deposition. Environmental Science & Technology 50:9343–9350.
  • Houston, M. C. 2011. Role of mercury toxicity in hypertension, cardiovascular disease, and stroke. Journal of Clinical Hypertension (Greenwich, Conn.) 13(8):621–627.
  • Huang, J., Kang, S., Tang, W., He, M., Guo, J., Zhang, Q., et al. 2022. Contrasting changes in long-term wet mercury deposition and socioeconomic development in the largest city of Tibet. The Science of the Total Environment 804:150124.
  • Hung, K. N., Yuan, C. S., Lee, C. E., Ie, I. R., Yeh, M. J., Soong, K. Y., Fang, S. C. et al. 2021. Spatiotemporal distribution and long-range transport of atmospheric speciated mercury at three remote islands in Taiwan Strait and South China Sea. Atmospheric Research. 248:105193
  • Huang, J., Kang, S., Wang, S., Wang, L., Zhang, Q., Guo, J., et al. 2013. Wet deposition of mercury at Lhasa, the capital city of Tibet. Science of the Total Environment 447:123–132.
  • Huang, J., Kang, S., Zhang, Q., Guo, J., Sillanpää, M., Wang, Y., et al. 2015. Characterizations of wet mercury deposition on a remote high-elevation site in the southeastern Tibetan Plateau. Environmental Pollution (Barking, Essex : 1987) 206:518–526.
  • Kaulfus, A. S., Nair, U., Holmes, C. D., and Landing, W. M. 2017. Mercury wet scavenging and deposition differences by precipitation type. Environmental Science & Technology 51:2628–2634.
  • Keeler, G. J., Gratz, L. E., and Al-Wali, K. 2005. Long-term atmospheric mercury wet deposition at Underhill, Vermont. Ecotoxicology (London, England) 14:71–83.
  • Li P., Feng, X. B.Qiu, G. L., Shang, L. H., Li, Z.G. et al. 2009. Mercury pollution in Asia: A review of the contaminated sites. Journal of Hazardous Materials. 168(2–3): 591–601.
  • Lyman, S. N., Cheng, I., Gratz, L. E., Weiss-Penzias, P., and Zhang, L. 2020. An updated review of atmospheric mercury. The Science of the Total Environment 707:135575.
  • Mao, H., Cheng, I., Zhang, L. et al. 2016. Current understanding of the driving mechanisms for spatiotemporal variations of atmospheric speciated mercury: a review. Atmospheric Chemistry and Physics. 16(20):12897–12924
  • Marumoto, K., and Matsuyama, A. 2014. Mercury speciation in wet deposition samples collected from a coastal area of Minamata Bay. Atmospheric Environment 86:220–224.
  • Nguyen, D. L., Kim, J. Y., Shim, S. G., Ghim, Y. S., and Zhang, X. S. 2016. Shipboard and ground measurements of atmospheric particulate mercury and total mercury in precipitation over the Yellow Sea region. Environmental Pollution 219:262–274.
  • Orihel, D. M., Paterson, M. J., Blanchfield, P. J., Bodaly, R., and Hintelmann, H. 2007. Experimental evidence of a linear relationship between inorganic mercury loading and methylmercury accumulation by aquatic biota. Environmental Science & Technology 41(14):4952–4958.
  • Pirrone, N., Cinnirella, S., Feng, X. B., Finkelman, R. B., Friedli, H. R., Leaner, J., Mason, R., Mukherjee, A. B., Stracher, G. B., Streets, D. G., Telmer, K. et al., 2010. Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmospheric Chemistry and Physics. 10:5951–5964.
  • Qin, C., Wang, Y., Peng, Y., and Wang, D. 2016. Four-year record of mercury wet deposition in one typical industrial city in southwest China. Atmospheric Environment 142:442–451.
  • Seo, Y. S., Han, Y. J., Holsen, T. M., Choi, E., Zoh, K. D., and Yi, S. M. 2015. Source identification of total mercury (TM) wet deposition using a Lagrangian particle dispersion model (LPDM). Atmospheric Environment 104:102–111.
  • Seo, Y. S., Han, Y. J., Choi, H. D., Holsen, T. M., and Yi, S. M. 2012. Characteristics of total mercury (TM) wet deposition: scavenging of atmospheric mercury species. Atmospheric Environment 49:69–76.
  • Shah, V., and Jaeglé, L. 2017. Subtropical subsidence and surface deposition of oxidized mercury produced in the free troposphere. Atmospheric Chemistry and Physics 17:8999–9017.
  • Sheu, G. R., Phu Nguyen, L. S., Truong, M. T., Lin, D. W. et al. 2019. Characteristics of atmospheric mercury at a suburban site in northern Taiwan and influence of trans-boundary haze events. Atmospheric Environment. 214:116827.
  • Tripathee, L., Guo, J., Kang, S., Paudyal, R., Sharma, C. M., Huang, J., et al. 2020. Measurement of mercury, other trace elements and major ions in wet deposition at Jomsom: The semi-arid mountain valley of the Central Himalaya. Atmospheric Research 234:104691.
  • Wang, H., Shi, G., Tian, M., Chen, Y., Qiao, B., Zhang, L., Fumo, Y. et al. 2018. Wet deposition and sources of inorganic nitrogen in the Three Gorges Reservoir Region, China. Environmental Pollution. 1(233):520–528.
  • Won, A. Y., Kim, M. K., and Zoh, K. D. 2019. Characteristics of total and methyl mercury in precipitation in Seoul, Korea. Atmospheric Pollution Research 10(2):493–500.
  • Xu, L., Chen, J., Yang, L., Yin, L., Yu, J., Qiu, T., et al. 2014. Characteristics of total and methyl mercury in wet deposition in a coastal city, Xiamen, China: Concentrations, fluxes and influencing factors on Hg distribution in precipitation. Atmospheric Environment 99:10–16.
  • Xu, L., Zhang, Y., Tong, L., Chen, Y., Zhao, G., Hong, Y., et al. 2020. Gas-particle partitioning of atmospheric reactive mercury and its contribution to particle bound mercury in a coastal city of the Yangtze River Delta. Atmospheric Environment 239:117744.
  • Yuan, C. S., Jhang, Y. M., Ie, I. R., Lee, C. E., Fang, G. C., Luo, J. et al. 2021. Exploratory investigation on spatiotemporal variation and source identification of atmospheric speciated mercury surrounding the Taiwan Strait. Atmospheric Pollution Research. 12(3):54–64.
  • Zhang, Y., Jacob, D. J., Horowitz, H. M., Chen, L., Amos, H. M., Krabbenhoft, D. P., et al. 2016. Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions. Proceedings of the National Academy of Sciences United States of America 113(3):526–531.
  • Zhao, Z., Wang, D., Wang, Y., Mu, Z., and Zhu, J. 2015. Wet deposition flux and runoff output flux of mercury in a typical small agricultural watershed in Three Gorges Reservoir areas. Environmental Science and Pollution Research 7:5538–5551.
  • Zhou, H., Zhou, C., Hopke, P. K., and Holsen, T. M. 2018. Mercury wet deposition and speciated mercury air concentrations at rural and urban sites across New York state: Temporal patterns, sources and scavenging coefficients. Science of the Total Environment 637–638:943–953.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.