Publication Cover
Neuropsychoanalysis
An Interdisciplinary Journal for Psychoanalysis and the Neurosciences
Volume 25, 2023 - Issue 1
590
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

A case for chaos theory inclusion in neuropsychoanalytic modeling

Pages 43-52 | Received 24 Oct 2022, Accepted 06 Mar 2023, Published online: 17 Apr 2023

References

  • Adeli, H., & Ghosh-Dastidar, S. (2010). Automated EEG-based diagnosis of neurological disorders: Inventing the future of neurology. CRC Press. https://doi.org/10.1201/9781439815328.
  • Adeli, H., Ghosh-Dastidar, S., & Dadmehr, N. (2007). A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy. IEEE Transactions on Biomedical Engineering, 54(2), 205–211. https://doi.org/10.1109/TBME.2006.886855
  • Ashley, S. (2015). Ergodic theory plays a key role in multiple fields. Proceedings of the National Academy of Sciences, 112(7), 1914–1914. https://doi.org/10.1073/pnas.1500429112
  • Breakspear, M. (2002). Nonlinear phase desynchronization in human electroencephalographic data. Human Brain Mapping, 15(3), 175–198. https://doi.org/10.1002/hbm.10011
  • Darbin, O., Adams, E., Martino, A., Naritoku, L., Dees, D., & Naritoku, D. (2013). Non-linear dynamics in parkinsonism. Frontiers in Neurology, 4, 2–6. https://doi.org/10.3389/fneur.2013.00211
  • Darbin, O., Hatanaka, N., Takara, S., Kaneko, M., Chiken, S., Naritoku, D., … Nambu, A. (2020). Local field potential dynamics in the primate cortex in relation to parkinsonism reveled by machine learning: A comparison between the primary motor cortex and the supplementary area. Neuroscience Research, 156, 66–79. https://doi.org/10.1016/j.neures.2020.01.012
  • Dorval, A., Russo, G., Hashimoto, T., Xu, W., Grill, W., & Vitek, J. (2008). Deep brain stimulation reduces neuronal entropy in the MPTP-primate model of Parkinson’s disease. Journal of Neurophysiology, 100(5), 2807–2818. https://doi.org/10.1152/jn.90763.2008
  • Faure, P., & Korn, H. (2001). Is there chaos in the brain? I. Concepts of nonlinear dynamics and methods of investigation. Comptes Rendus de l'Académie des Sciences-Series III-Sciences de la Vie, 324(9), 773–793. https://doi.org/10.1016/S0764-4469(01)01377-4
  • Freeman, W. (1994). Characterization of state transitions in spatially distributed, chaotic, nonlinear, dynamical systems in cerebral cortex. Integrative Physiological and Behavioral Science, 29(3), 294–306. https://doi.org/10.1007/BF02691333
  • Freud, S. (1895/1950). Project for a scientific psychology. The standard edition of the complete psychological works of Sigmund Freud, Vol. 1. Hogarth Press. p. 281–397.
  • Freud, S. (1901/2009). The psychopathology of everyday life. Neeland Media LLC. Kindle Edition.
  • Frigg, R. (2004). In what sense is the Kolmogorov-Sinai entropy a measure for chaotic behaviour? Bridging the gap between dynamical systems theory and communication theory. The British Journal for the Philosophy of Science, 411–434. https://doi.org/10.1093/bjps/55.3.411
  • Frigg, R., Berkovitz, J., & Kronz, F. (2020). The ergodic hierarchy. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Fall 2020 Edition). Stanford, CA: The Metaphysics Research Lab. https://plato.stanford.edu/archives/fall2020/entries/ergodic-hierarchy/
  • Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11(2), 127–138. https://doi.org/10.1038/nrn2787
  • Friston, K. (2013). Life as we know it. Journal of the Royal Society Interface, 10(86), 1–12. https://doi.org/10.1098/rsif.2013.0475
  • Friston, K., Heins, C., Ueltzhöffer, K., Da Costa, L., & Parr, T. (2021). Stochastic chaos and Markov blankets. Entropy, 23(9), 1220. https://doi.org/10.3390/e23091220
  • Friston, K., Kilner, J., & Harrison, L. (2006). A free energy principle for the brain. Journal of Physiology-Paris, 100(1–3), 70–87. https://doi.org/10.1016/j.jphysparis.2006.10.001
  • Friston, K., Parr, T., & de Vries, B. (2017). The graphical brain: Belief propagation and active inference. Network Neuroscience, 1(4), 381–414. https://doi.org/10.1162/NETN_a_00018
  • Galatzer-Levy, R. M. (2020). Discussion of a new project for a scientific psychology. Neuropsychoanalysis, 22(1–2), 63–67. https://doi.org/10.1080/15294145.2021.1878611
  • Gleick, J. (2008). Chaos: Making a new science. Penguin.
  • Gosseries, O., Schnakers, C., Ledoux, D., Vanhaudenhuyse, A., Bruno, M. A., Demertzi, A., Noirhomme, Q., Lehembre, R., Damas, P., Goldman, S., Peeters, E., Moonen, G., & Laureys S. (2011). Automated EEG entropy measurements in coma, vegetative state/unresponsive wakefulness syndrome and minimally conscious state. Functional Neurology, 26(1), 25–30.
  • Hohwy, J. (2016). The self-evidencing brain. Noûs, 50(2), 259–285. https://doi.org/10.1111/nous.12062
  • Jaynes, E. (1957). Information theory and statistical mechanics. Physical Review, 106(4), 620–630. https://doi.org/10.1103/PhysRev.106.620
  • Kantz, H., & Schreiber, T. (2003). Nonlinear time series analysis (2nd ed.). Cambridge University Press. https://doi.org/10.1017/CBO9780511755798
  • Korn, H., & Faure, P. (2003). Is there chaos in the brain? II. Experimental evidence and related models. Comptes Rendus Biologies, 326(9), 787–840. https://doi.org/10.1016/j.crvi.2003.09.011
  • Lafreniere-Roula, M., Darbin, O., Hutchison, W., Wichmann, T., Lozano, A., & Dostrovsky, J. (2010). Apomorphine reduces subthalamic neuronal entropy in parkinsonian patients. Experimental Neurology, 225(2), 455–458. https://doi.org/10.1016/j.expneurol.2010.07.016
  • Lee, G. M., Fattinger, S., Mouthon, A. L., Noirhomme, Q., & Huber, R. (2013). Electroencephalogram approximate entropy influenced by both age and sleep. Frontiers in Neuroinformatics, 7, 33. https://doi.org/10.3389/fninf.2013.00033
  • Liley, D. T., Bojak, I., Dafilis, M., van Veen, L., Frascoli, F., & Foster, B. (2010). Bifurcations and state changes in the human alpha rhythm: Theory and experiment. Modeling phase transitions in the brain, 117–145. https://doi.org/10.1007/978-1-4419-0796-7_6
  • Lorenz, E. (1963). Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20(2), 130–141. https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
  • Ma, Y., Shi, W., Peng, C., & Yang, A. (2018). Nonlinear dynamical analysis of sleep electroencephalography using fractal and entropy approaches. Sleep Medicine Reviews, 37, 85–93. https://doi.org/10.1016/j.smrv.2017.01.003
  • Mateos, D., Guevara Erra, R., Wennberg, R., & Perez Velazquez, J. (2018). Measures of entropy and complexity in altered states of consciousness. Cognitive Neurodynamics, 12(1), 73–84. https://doi.org/10.1007/s11571-017-9459-8
  • Medaglia, J., Ramanathan, D., Venkatesan, U., & Hillary, F. (2011). The challenge of non-ergodicity in network neuroscience. Network: Computation in Neural Systems, 22(1-4), 148–153. https://doi.org/10.3109/09638237.2011.639604
  • Müller, M., Caporro, M., Gast, H., Pollo, C., Wiest, R., Schindler, K., & Rummel, C. (2020). Linear and nonlinear interrelations show fundamentally distinct network structure in preictal intracranial EEG of epilepsy patients. Human Brain Mapping, 41(2), 467–483. https://doi.org/10.1002/hbm.24816
  • Pincus, S. (1991). Approximate entropy as a measure of system complexity. Proceedings of the National Academy of Sciences, 88(6), 2297–2301. https://doi.org/10.1073/pnas.88.6.2297
  • Planck, M. (1897). Treatise on thermodynamics, translated by A. Ogg, Longmans Green. (Original work published 1903)
  • Sarà, M., & Pistoia, F. (2010). Complexity loss in physiological time series of patients in a vegetative state. Nonlinear Dynamics, Psychology, and Life Sciences, 14(1), 1–13.
  • Shannon, C. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(3), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
  • Solms, M. (2018). The feeling brain: Selected papers on neuropsychoanalysis. Routledge. https://doi.org/10.4324/9780429481758
  • Solms, M. (2019). The hard problem of consciousness and the free energy principle. Frontiers in Psychology, 2714, 1–16. https://doi.org/10.3389/fpsyg.2018.02714
  • Solms, M. (2020). New project for a scientific psychology: General scheme. Neuropsychoanalysis, 22(1–2), 5–35. https://doi.org/10.1080/15294145.2020.1833361
  • Solms, M. (2020). Response to the commentaries on the “New Project”. Neuropsychoanalysis, 22(1–2), 97–107. https://doi.org/10.1080/15294145.2020.1843215
  • Solms, M. (2021). The hidden spring: A journey to the source of consciousness. Profile Books.
  • Solms, M., & Friston, K. (2018). How and why consciousness arises: Some considerations from physics and physiology. Journal of Consciousness Studies, 25(5–6), 202–238.
  • Stanford. (2011, February 1). 1. Introduction to Human Behavioral Biology [Video]. YouTube. https://www.youtube.com/watch?v=NNnIGh9g6fA&list=PL848F2368C90DDC3D.
  • Tasic, B., Yao, Z., Graybuck, L. T., Smith, K. A., Nguyen, T. N., Bertagnolli, D., … Zeng, H. (2018). Shared and distinct transcriptomic cell types across neocortical areas. Nature, 563(7729), 72–78. https://doi.org/10.1038/s41586-018-0654-5
  • Thul, A., Lechinger, J., Donis, J., Michitsch, G., Pichler, G., Kochs, E. F., … Schabus, M. (2016). EEG entropy measures indicate decrease of cortical information processing in disorders of consciousness. Clinical Neurophysiology, 127(2), 1419–1427. https://doi.org/10.1016/j.clinph.2015.07.039
  • Toker, D., Sommer, F., & D’Esposito, M. (2020). A simple method for detecting chaos in nature. Communications Biology, 3(1), 1–13. https://doi.org/10.1038/s42003-019-0715-9
  • Weigel, A. V., Simon, B., Tamkun, M. M., & Krapf, D. (2011). Ergodic and nonergodic processes coexist in the plasma membrane as observed by single-molecule tracking. Proceedings of the National Academy of Sciences, 108(16), 6438–6443. https://doi.org/10.1073/pnas.1016325108
  • Weron, A., Burnecki, K., Akin, E. J., Solé, L., Balcerek, M., Tamkun, M. M., & Krapf, D. (2017). Ergodicity breaking on the neuronal surface emerges from random switching between diffusive states. Scientific Reports, 7(1), 1–10. https://doi.org/10.1038/s41598-017-05911-y
  • Zolezzi, D. M., Alonso-Valerdi, L. M., Naal-Ruiz, N. E., & Ibarra-Zarate, D. I. (2021). Identification of neuropathic pain severity based on linear and Non-linear EEG features. In 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) (pp. 169–173). IEEE. https://doi.org/10.1109/EMBC46164.2021.9630101.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.