46
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Size class, sex ratio, and spatial distribution of four populations of Pimelea microcephala subsp. microcephala under different long-term rainfall regimes

, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 263-284 | Received 10 Feb 2023, Accepted 09 Nov 2023, Published online: 20 Nov 2023

References

  • Álvarez-Cansino, L., M. Zunzunegui, M. C. Díaz Barradas, O. Correia, and M. P. Esquivias. 2013. Effects of temperature and rainfall variation on population structure and sexual dimorphism across the geographical range of a dioecious species. Population Ecology, (55):135–146. doi: 10.1007/s10144-012-0336-3.
  • Ashman, T. L. 2002. The role of herbivores in the evolution of separate sexes from hermaphroditism. Ecology 83 (5):1175–84. doi: 10.1890/0012-9658(2002)083[1175:TROHIT]2.0.CO;2.
  • Baddeley, A., and R. Turner. 2005. spatstat: An R package for analyzing spatial point patterns. Journal of Statistical Software 12 (6):1–42. doi: 10.18637/jss.v012.i06.
  • Barrett, S. C. H., A. L. Case, and G. B. Peters. 1999. Gender modification and resource allocation in subdioecious Wurmbea dioica (Colchicaceae). Journal of Ecology 87 (1):123–37. doi: 10.1046/j.1365-2745.1999.00336.x.
  • Baumann, K., P. Marschner, R. J. Smernik, and J. A. Baldock. 2009. Residue chemistry and microbial community structure during decomposition of eucalypt, wheat and vetch residues. Soil Biology and Biochemistry 41 (9):1966–75. doi: 10.1016/j.soilbio.2009.06.022.
  • Bertiller, M., C. Sain, A. Bisigato, F. Coronato, J. Aries, and P. Graff. 2002. Spatial sex segregation in the dioecious grass Poa ligularis in northern Patagonia: The role of environmental patchiness. Biodiversity and Conservation 11 (1):69–84. doi: 10.1023/A:1014084024145.
  • Bierzychudek, P., and V. Eckhart. 1988. Spatial segregation of the sexes of dioecious plants. The American Naturalist 132 (1):34–43. doi: 10.1086/284836.
  • Boulton, R. L., T. J. Junt, L. J. Ireland, and J. L. Thomas. 2021. Western Bassian Thrush Zoothera lunulata halmaturina. In The action plan for Australian birds 2020, eds S. T. Garnett and G. B. Baker, 770–3. Melbourne, Australia: CSIRO Publishing.
  • Braganza, K., S. Power, B. Trewin, J. Arblaster, B. Timbal, P. Hope, C. Frederiksen, J. McBride, D. Jones, and N. Plummer. 2011. Update on the state of the climate, long-term trends and associated causes. In CAWCR Technical Report No. 306, eds T. Keenan and H. Cleugh, 106. Canberra, Australia: Centre for Australian Weather and Climate Research.
  • Bubb, K. A., Z. H. Xu, J. A. Simpson, and P. G. Saffigna. 1998. Some nutrient dynamics associated with litterfall and litter decomposition in hoop pine plantations of southeast Queensland, Australia. Forest Ecology and Management 110 (1–3):343–52. doi: 10.1016/S0378-1127(98)00295-3.
  • Bureau of Meterology. 2017. Climate data online. http://www.bom.gov.au/climate/data/ (accessed June 21, 2022).
  • Bürli, S., J. R. Pannell, and J. Tonnabel. 2022. Environmental variation in sex ratios and sexual dimorphism in three wind-pollinated dioecious plant species. Oikos 2022 (6):e08651. doi: 10.1111/oik.08651.
  • Cepeda-Cornejo, V., and R. Dirzo. 2010. Sex-related differences in reproductive allocation, growth, defense and herbivory in three dioecious neotropical palms. PLOS One 5 (3):e9824–e. doi: 10.1371/journal.pone.0009824.
  • Charnov, E. L. 1982. The theory of sex allocation. Princeton, NJ: Princeton University Press.
  • Clarke, K. R., and R. N. Gorley. 2015. PRIMER version 7.0.13 user manual/tutorial. Plymouth, UK: PRIMER-E.
  • Clarke, K. R., R. N. Gorley, P. J. Somerfield, and R. M. Warwick. 2014. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. 3rd ed. Ivybridge, UK: PRIMER-E.
  • Costich, D. E. 1995. Gender specialization across a climatic gradient: Experimental comparison of monoecious and dioecious Ecballium. Ecology 76 (4):1036–50. doi: 10.2307/1940914.
  • Costich, D. E., and T. R. Meagher. 1992. Genetic variation in Ecballium elaterium (Cucurbitaceae): breeding system and geographic distribution. Journal of Evolutionary Biology 5 (4):589–601. doi: 10.1046/j.1420-9101.1992.5040589.x.
  • Danley, K., T. Isaksen, N. Gardner, P. Randall-Yoho, and L. Allphin. 2000. Spatial distribution and sexual dimorphism in dioecious Atriplex garettii Rydb. Poster presented at the Annual Meeting of the Botanical Society of America with Other Affiliated Societies, USA, June.
  • Darwin, C. 1877. The different forms of flowers on plants of the same species. London: John Murray.
  • Dawson, T. E., and L. Bliss. 1989. Patterns of water use and the tissue water relations in the dioecious shrub, Salix arctica: The physiological basis for habitat partitioning between the sexes. Oecologia 79 (3):332–43. doi: 10.1007/BF00384312.
  • Dawson, T. E., J. K. Ward, and J. R. Ehleringer. 2004. Temporal scaling of physiological responses from gas exchange to tree rings: A gender-specific study of Acer negundo (Boxelder) growing under different conditions. Functional Ecology 18 (2):212–22. doi: 10.1111/j.0269-8463.2004.00838.x.
  • Delph, L. F. 2019. Water availability drives population divergence in sex-specific responses in a dioecious plant. American Journal of Botany 106 (10):1346–55. doi: 10.1002/ajb2.1359.
  • Díaz-Barradas, M. C., M. Zunzunegui, M. Collantes, L. Álvarez-Cansino, and F. García Novo. 2014. Gender-related traits in the dioecious shrub Empetrum rubrum in two plant communities in the Magellanic steppe. Acta Oecologica 60:40–8. doi: 10.1016/j.actao.2014.07.003.
  • Díaz-Barradas, M. C., M. Zunzunegui, O. Correia, F. Ain-Lhout, M. P. Esquivias, and L. Álvarez-Cansino. 2018. Gender dimorphism in Corema album across its biogeographical area and implications under a scenario of extreme drought events. Environmental and Experimental Botany 155:609–18. doi: 10.1016/j.envexpbot.2018.08.011.
  • Diggle, P. J. 1983. Statistical analysis of spatial point patterns. New York, USA: Academic Press.
  • Draper, J. T., J. G. Conran, B. S. Simpson, and P. Weinstein. 2022a. Sex-linked reproductive allocation in the dioecious shrub Pimelea microcephala subsp. microcephala (Thymelaeaceae) from four populations across a rainfall gradient. Transactions of the Royal Society of South Australia 147 (1):1–16. doi: 10.1080/03721426.2022.2141875.
  • Draper, J. T., D. Permal, P. Weinstein, and B. S. Simpson. 2022b. Not-so-forbidden fruit: The potential conservation role of toxic Pimelea microcephala subsp. microcephala fruits for native arid zone birds. Emu – Austral Ornithology 122 (2):131–43. doi: 10.1080/01584197.2022.2092751.
  • Dudley, L. S. 2006. Ecological correlates of secondary sexual dimorphism in Salix glauca. American Journal of Botany 93 (12):1775–83. doi: 10.3732/ajb.93.12.1775.
  • El-Keblawy, A., and D. C. Freeman. 1999. Spatial segregation by gender of the subdioecious shrub Thymelaea hirsuta in the Egyptian desert. International Journal of Plant Sciences 160 (2):341–50. doi: 10.1086/314131.
  • Eldridge, D. J., and R. Simpson. 2002. Rabbit (Oryctolagus cuniculus L.) impacts on vegetation and soils, and implications for management of wooded rangelands. Basic and Applied Ecology 3 (1):19–29. doi: 10.1078/1439-1791-00078.
  • Eppley, S. M. 2005. Spatial segregation of the sexes and nutrients affect reproductive success in a dioecious wind-pollinated grass. Plant Ecology 181 (2):179–90. doi: 10.1007/s11258-005-6142-7.
  • Facelli, J. M., and D. J. Brock. 2000. Patch dynamics in arid lands: Localized effects of Acacia papyrocarpa on soils and vegetation of open woodlands of South Australia. Ecography 23 (4):479–91. doi: 10.1034/j.1600-0587.2000.230410.x.
  • Facelli, J. M., and S. T. A. Pickett. 1991. Plant litter: Its dynamics and effects on plant community structure. The Botanical Review 57 (1):1–32. doi: 10.1007/BF02858763.
  • Faith, D. 1991. Effective pattern analysis methods for nature conservation. In Nature conservation: cost effective biological surveys and data analysis, eds. C. Margules and M. Austin, 47–53. Melbourne, Australia: CSIRO.
  • Field, D. L., M. Pickup, and S. C. H. Barrett. 2013. Ecological context and metapopulation dynamics affect sex-ratio variation among dioecious plant populations. Annals of Botany 111 (5):917–23. doi: 10.1093/aob/mct040.
  • Galindo-González, J., S. Guevara, and V. J. Sosa. 2000. Bat- and bird-generated seed rains at isolated trees in pastures in a tropical rainforest. Conservation Biology 14 (6):1693–703. doi: 10.1111/j.1523-1739.2000.99072.x.
  • Ghadirzadeh-Khorzoghi, E., M. Jannesar, Z. Jahanbakhshian-Davaran, M. Moazzam-Jazi, A. Lotfi, A. Tajabadi Pour, and S. M. Seyedi. 2022. The influence of environmental conditions on sex ratio in a dioecious plant Pistacia vera L. Plant Physiology Reports 27 (1):152–9. doi: 10.1007/s40502-021-00614-z.
  • Goldberg, E. E., S. P. Otto, J. C. Vamosi, I. Mayrose, N. Sabath, R. Ming, and T. L. Ashman. 2017. Macroevolutionary synthesis of flowering plant sexual systems. Evolution 71 (4):898–912. doi: 10.1111/evo.13181.
  • Guerin, G., M. Christmas, B. Sparrow, and A. Lowe. 2018. Projected climate change implications for the South Australian flora. Swainsona 30:25–31.
  • Guevara, S., and J. Laborde. 1993. Monitoring seed dispersal at isolated standing trees in tropical pastures: Consequences for local species availability. Vegetatio 107–108 (1):319–38. doi: 10.1007/BF00052232.
  • Guevara, S., S. E. Purata, and E. Van Der Maarel. 1986. The role of remnant forest trees in tropical secondary succession. Vegetatio 66 (2):77–84. doi: 10.1007/BF00045497.
  • Hart, J. 1985. Peripheral isolation and the origin of diversity in Lepechinia sect, Parviflorae (Lamiaceae). Systematic Botany 10 (2):134–46. doi: 10.2307/2418339.
  • Hastwell, G. T., and J. M. Facelli. 2000. Effects of leaf litter on woody seedlings in xeric successional communities. Plant Ecology 148 (2):225–31. doi: 10.1023/A:1009834425538.
  • Hastwell, G. T., and J. M. Facelli. 2003. Differing effects of shade-induced facilitation on growth and survival during the establishment of a chenopod shrub. Journal of Ecology 91 (6):941–50. doi: 10.1046/j.1365-2745.2003.00832.x.
  • Hultine, K. R., S. E. Bush, J. K. Ward, and T. E. Dawson. 2018. Does sexual dimorphism predispose dioecious riparian trees to sex ratio imbalances under climate change? Oecologia 187 (4):921–31. doi: 10.1007/s00442-018-4190-7.
  • Hultine, K. R., K. C. Grady, T. E. Wood, S. M. Shuster, J. C. Stella, and T. G. Whitham. 2016. Climate change perils for dioecious plant species. Nature Plants 2 (8):16109. doi: 10.1038/nplants.2016.109.
  • Iszkuło, G., A. K. Jasińska, A. Romo, D. Tomaszewski, and J. Szmyt. 2011. The greater growth rate of male over female of the dioecious tree Juniperus thurifera only in worse habitat conditions. Dendrobiology 66:15–24.
  • Javaid, M. M., S. K. Florentine, H. H. Ali, and B. S. Chauhan. 2018. Environmental factors affecting the germination and emergence of white horehound (Marrubium vulgare L.): A weed of arid-zone areas. The Rangeland Journal 40 (1):47–54. doi: 10.1071/RJ17121.
  • Juvany, M., and S. Munné-Bosch. 2015. Sex-related differences in stress tolerance in dioecious plants: A critical appraisal in a physiological context. Journal of Experimental Botany 66 (20):6083–92. doi: 10.1093/jxb/erv343.
  • Käfer, J., G. A. B. Marais, and J. R. Pannell. 2017. On the rarity of dioecy in flowering plants. Molecular Ecology 26 (5):1225–41. doi: 10.1111/mec.14020.
  • Khanduri, V. P., A. Sukumaran, and C. M. Sharma. 2019. Male-skewed sex ratio in Myrica esculenta: A dioecious tree species. Trees 33 (4):1157–65. doi: 10.1007/s00468-019-01850-5.
  • Kohorn, L. U. 1995. Geographic variation in the occurrence and extent of sexual dimorphism in a dioecious shrub, Simmondsia chinensis. Oikos 74 (1):137–45. doi: 10.2307/3545682.
  • Leigh, A., M. J. Cosgrove, and A. B. Nicotra. 2006. Reproductive allocation in a gender dimorphic shrub: Anomalous female investment in Gynatrix pulchella? Journal of Ecology 94 (6):1261–71. doi: 10.1111/j.1365-2745.2006.01164.x.
  • Leigh, A., and A. B. Nicotra. 2003. Sexual dimorphism in reproductive allocation and water use efficiency in Maireana pyramidata (Chenopodiaceae), a dioecious, semi-arid shrub. Australian Journal of Botany 51 (5):509–14. doi: 10.1071/BT03043.
  • Li, C., J. Ren, J. Luo, and R. Lu. 2004. Sex-specific physiological and growth responses to water stress in Hippophae rhamnoides L. populations. Acta Physiologiae Plantarum 26 (2):123–9. doi: 10.1007/s11738-004-0001-3.
  • Liu, M., H. Korpelainen, and C. Li. 2021. Sexual differences and sex ratios of dioecious plants under stressful environments. Journal of Plant Ecology (14):920–33. doi: 10.1093/jpe/rtab038.
  • Lloyd, D., and C. Webb. 1977. Secondary sex characters in plants. The Botanical Review 43 (2):177–216. doi: 10.1007/BF02860717.
  • Lloyd, D. G. 1979. Parental strategies of angiosperms. New Zealand Journal of Botany 17 (4):595–606. doi: 10.1080/0028825X.1979.10432573.
  • Mangiafico, S. 2022. rcompanion: Functions to support extension education program evaluation. (R package version 2.4.18). https://CRAN.R-project.org/package=rcompanion
  • Martins, A., H. Freitas, and S. Costa. 2017. Corema album: Unbiased dioecy in a competitive environment. Plant Biology 19 (5):824–34. doi: 10.1111/plb.12584.
  • McDonald J. 2015. Fisher’s exact test of independence. In Handbook of Biological Statistics, ed. J. McDonald. Baltimore, Maryland: Sparky House Publishing.
  • McLellan, R. C., and D. M. Watson. 2022. The living dead: Demography of Australian sandalwood in Australia’s western rangelands. Austral Ecology 47 (8):1685–709. doi: 10.1111/aec.13243.
  • Meagher, T. R., and L. F. Delph. 2001. Individual flower demography, floral phenology and floral display size in Silene latifolia. Evolutionary Ecology Research 3:845–60.
  • Mercer, C., and S. Eppley. 2010. Intersexual competition in a dioecious grass. Oecologia 164 (3):657–64. doi: 10.1007/s00442-010-1675-4.
  • Morales, M., M. Oñate, M. B. García, S. Munné‐Bosch, and R. Salguero‐Gómez. 2013. Photo-oxidative stress markers reveal absence of physiological deterioration with ageing in Borderea pyrenaica, an extraordinarily long-lived herb. Journal of Ecology 101 (3):555–65. doi: 10.1111/1365-2745.12080.
  • Munné-Bosch, S. 2015. Sex ratios in dioecious plants in the framework of global change. Environmental and Experimental Botany 109:99–102. doi: 10.1016/j.envexpbot.2014.08.007.
  • Muyle, A., H. Martin, N. Zemp, M. Mollion, S. Gallina, R. Tavares, A. Silva, T. Bataillon, A. Widmer, S. Glémin, et al. 2021. Dioecy is associated with high genetic diversity and adaptation rates in the plant genus Silene. Molecular Biology and Evolution 38 (3):805–18. doi: 10.1093/molbev/msaa229.
  • Nicotra, A. B. 1998. Sex ratio variation and spatial distribution of Siparuna grandiflora, a tropical dioecious shrub. Oecologia 115 (1-2):102–13. doi: 10.1007/s004420050496.
  • Nowak, K., M. J. Giertych, E. Pers-Kamczyc, P. A. Thomas, and G. Iszkuło. 2021. Rich but not poor conditions determine sex‐specific differences in growth rate of juvenile dioecious plants. Journal of Plant Research 134 (5):947–62. doi: 10.1007/s10265-021-01296-2.
  • Obeso, J. R. 2002. The costs of reproduction in plants. The New Phytologist 155 (3):321–48. doi: 10.1046/j.1469-8137.2002.00477.x.
  • Ohya, I., S. Nanami, and A. Itoh. 2017. Dioecious plants are more precocious than co-sexual plants: A comparative study of relative sizes at the onset of sexual reproduction in woody species. Ecology and Evolution 7 (15):5660–8. doi: 10.1002/ece3.3117.
  • Olano, J. M., N. González-Muñoz, A. Arzac, V. Rozas, G. Von Arx, S. Delzon, and A. I. García-Cervigón. 2017. Sex determines xylem anatomy in a dioecious conifer: Hydraulic consequences in a drier world. Tree Physiology 37 (11):1493–502. doi: 10.1093/treephys/tpx066.
  • Pérez-Llorca, M., and J. Sánchez Vilas. 2019. Sexual dimorphism in response to herbivory and competition in the dioecious herb Spinacia oleracea. Plant Ecology 220 (1):57–68. doi: 10.1007/s11258-018-0902-7.
  • Petry, W. K., J. D. Soule, A. M. Iler, A. Chicas-Mosier, D. W. Inouye, T. E. X. Miller, and K. A. Mooney. 2016. Sex-specific responses to climate change in plants alter population sex ratio and performance. Science 353 (6294):69–71. doi: 10.1126/science.aaf2588.
  • Pickering, C. M. 2000. Sex-specific differences in floral display and resource allocation in Australian alpine dioecious Aciphylla glacialis (Apiaceae). Australian Journal of Botany 48 (1):81–91. doi: 10.1071/BT97121.
  • Purrington, C. B., and J. Schmitt. 1998. Consequences of sexually dimorphic timing of emergence and flowering in Silene latifolia. Journal of Ecology 86 (3):397–404. doi: 10.1046/j.1365-2745.1998.00262.x.
  • Ramírez, N. 2022. Sexual and breeding systems in a xerophytic shrubland. Open Journal of Ecology 12 (07):434–82. doi: 10.4236/oje.2022.127025.
  • Renner, S. S. 2014. The relative and absolute frequencies of angiosperm sexual systems: Dioecy, monoecy, gynodioecy, and an updated online database. American Journal of Botany 101 (10):1588–96. doi: 10.3732/ajb.1400196.
  • Ripley, B. D. 1981. Spatial statistics. Hoboken, New Jersey, USA: John Wiley & Sons, Inc.
  • Robley, A. J., J. Short, and S. Bradley. 2001. Dietary overlap between the burrowing bettong (Bettongia lesueur) and the European rabbit (Oryctolagus cuniculus) in semi-arid coastal Western Australia. Wildlife Research 28 (4):341–9. doi: 10.1071/WR00060.
  • Rye, B., and M. Heads. 1990. Thymelaeaceae. In Flora of Australia, Podostemaceae to Combretaceae, eds. B. Barlow, P. Bridgewater, B. Briggs, R. Carolin, R. Chinnock, H. Eichler, G. et al., Vol. 18, 122–214. Canberra: Australian Government Publishing Service.
  • Sinclair, J. P., J. Emlen, and D. C. Freeman. 2012. Biased sex ratios in plants: Theory and trends. The Botanical Review 78 (1):63–86. doi: 10.1007/s12229-011-9065-0.
  • Sokal, R. R., and C. Michener. 1958. A statistical method for evaluating systematic relationship. University of Kansas Science Bulletin 38:1409–38.
  • Soliveres, S., D. J. Eldridge, J. D. Müller, F. Hemmings, and H. L. Throop. 2015. On the interaction between tree canopy position and environmental effects on soil attributes and plant communities. Journal of Vegetation Science 26 (6):1030–42. doi: 10.1111/jvs.12312.
  • R Core Team. 2022. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
  • Tester, M., D. C. Paton, N. Reid, and R. Lange. 1987. Seed dispersal by birds and densities of shrubs under trees in arid South Australia. Transactions of the Royal Society of South Australia 111:1–5.
  • Timerman, D., and S. C. H. Barrett. 2019. The spatial ecology of sex ratios in a dioecious plant: Relations between ramet and genet sex ratios. Journal of Ecology 107 (4):1804–16. doi: 10.1111/1365-2745.13128.
  • Tiver, F., and M. H. Andrew. 1997. Relative effects of herbivory by sheep, rabbits, goats and kangaroos on recruitment and regeneration of shrubs and trees in eastern South Australia. The Journal of Applied Ecology 34 (4):903–14. doi: 10.2307/2405281.
  • Tognetti, R. 2012. Adaptation to climate change of dioecious plants: Does gender balance matter? Tree Physiology 32 (11):1321–4. doi: 10.1093/treephys/tps105.
  • Tozawa, M., N. Ueno, and K. Seiwa. 2009. Compensatory mechanisms for reproductive costs in the dioeocius tree Salix integra. Botany 87 (3):315–23. doi: 10.1139/B08-125.
  • Tsuji, K., K. Kobayashi, E. Hasegawa, and J. Yoshimura. 2020. Dimorphic flowers modify the visitation order of pollinators from male to female flowers. Scientific Reports 10 (1):9965. doi: 10.1038/s41598-020-66525-5.
  • Ueno, N., and K. Seiwa. 2003. Gender-specific shoot structure and functions in relation to habitat conditions in a dioecious tree, Salix sachalinensis. Journal of Forest Research 8 (1):9–16. doi: 10.1007/s103100300001.
  • Ueno, N., H. Kanno, and K. Seiwa. 2006. Sexual differences in shoot and leaf dynamics in the dioecious tree Salix sachalinensis. Canadian Journal of Botany 84 (12):1852–9. doi: 10.1139/b06-142.
  • Vasey, G. L., P. J. Weisberg, and A. K. Urza. 2022. Intraspecific trait variation in a dryland tree species corresponds to regional climate gradients. Journal of Biogeography 49 (12):2309–20. doi: 10.1111/jbi.14515.
  • Vessella, F., A. Salis, M. Scirè, G. Piovesan, and B. Schirone. 2015. Natural regeneration and gender-specific spatial pattern of Taxus baccata in an old-growth population in Foresta Umbra (Italy). Dendrobiology 73:75–90. doi: 10.12657/denbio.073.008.
  • Wang, Y., S. J. Mazer, R. P. Freckleton, Z. Yuan, X. Wang, Y. Du, L. Lin, X. Wang, W. Sang, X. Liu, et al. 2019. Testing mechanisms of compensatory fitness of dioecy in a co-sexual world. Journal of Vegetation Science 30 (3):413–26. doi: 10.1111/jvs.12730.
  • Ward, J. K., T. E. Dawson, and J. R. Ehleringer. 2002. Responses of Acer negundo genders to interannual differences in water availability determined from carbon isotope ratios of tree ring cellulose. Tree Physiology 22 (5):339–46. doi: 10.1093/treephys/22.5.339.
  • Warton, D. I., R. A. Duursma, A. Remko, D. S. Flaster, and S. Taskinen. 2012. smatr 3 – an R package for estimation and inference about allometric lines. Methods in Ecology and Evolution 3 (2):257–9. doi: 10.1111/j.2041-210X.2011.00153.x.
  • Willis, A. J., R. McKay, J. A. Vranjic, M. J. Kilby, and R. H. Groves. 2003. Comparative seed ecology of the endangered shrub, Pimelea spicata and a threatening weed, Bridal creeper: Smoke, heat and other fire-related germination cues. Ecological Management & Restoration 4 (1):55–65. doi: 10.1046/j.1442-8903.2003.00131.x.
  • Yang, G., Q. Xu, W. Li, J. Ling, X. Li, and T. Yin. 2020. Sex-related differences in growth, herbivory, and defense of two Salix species. Forests 11 (4):450. doi: 10.3390/f11040450.
  • Zimmerman, J., and M. Lechowicz. 1982. Responses to moisture stress in male and female plants of Rumex acetosella L. (Polygonaceae). Oecologia 53 (3):305–9. doi: 10.1007/BF00389005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.