62
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Effect of nutrient solution concentrations and irrigation levels combined with humic acid on physiological and quality characteristics of rocket crop (Eruca sativa (mill.) thell.)

Pages 201-225 | Received 23 Feb 2023, Accepted 13 Nov 2023, Published online: 24 Nov 2023

References

  • Abdelkhalik, A., B. Pascual, I. Nájera, M. A. Domene, C. Baixauli, and N. Pascual-Seva. 2020. Effects of deficit irrigation on the yield and irrigation water use efficiency of drip-irrigated sweet pepper (Capsicum annuum L.) under Mediterranean conditions. Irrigation Science 38 (1):89–104. doi: 10.1007/s00271-019-00655-1.
  • Abdelrasheed, K. G., Y. Mazrou, A. E.-D. Omara, H. S. Osman, Y. Nehela, E. M. Hafez, A. M. S. Rady, D. A. El-Moneim, B. F. Alowaiesh, S. M. Gowayed, et al. 2021. Soil amendment using biochar and application of K-humate enhance the growth, productivity, and nutritional value of onion (Allium cepa L.) under deficit irrigation conditions. Plants 10 (12):2598. doi: 10.3390/plants10122598.
  • Ahmed, A. F., H. Yu, X. Yang, and W. Jiang. 2014. Deficit irrigation affects growth, yield, vitamin C content, and irrigation water use efficiency of hot pepper grown in soilless culture. HortScience 49 (6):722–8. doi: 10.21273/HORTSCI.49.6.722.
  • Akhzari, D., S. Mahdavi, M. Pessarakli, and M. Ebrahimi. 2016. Effects of arbuscular mycorrhizal fungi on seedling growth and physiological traits of Melilotus officinalis L. grown under salinity stress conditions. Communications in Soil Science and Plant Analysis.47 (7):822–31. doi: 10.1080/00103624.2016.1146897.
  • Akladious, S. A., and H. I. Mohamed. 2018. Ameliorative effects of calcium nitrate and humic acid on the growth, yield component and biochemical attribute of pepper (Capsicum annuum) plants grown under salt stress. Sci Hortic 236:244–50. doi: 10.1016/j.scienta.2018.03.047.
  • Akram, M. 2014. Effects of nitrogen application on chlorophyll content, water relations, and yield of maize hybrids under saline conditions. Communications in Soil Science and Plant Analysis 45 (10):1336–56. doi: 10.1080/00103624.2013.875199.
  • Alberici, A., E. Quattrini, M. Penati, L. Martinetti, P. Marino Gallina, A. Ferrante, and M. Schiavi. 2008. Effect of the reduction of nutrient solution concentration on leafy vegetables quality grown in floating system. Acta Horticulturae 801 (801):1167–76. doi: 10.17660/ActaHortic.2008.801.142.
  • Ali, S., S. A. Bharwana, M. Rizwan, M. Farid, S. Kanwal, Q. Ali, M. Ibrahim, R. A. Gill, and M. D. Khan. 2015. Fulvic acid mediates chromium (Cr) tolerance in wheat (Triticum aestivum L.) through lowering of Cr uptake and improved antioxidant defense system. Environmental Science and Pollution Research International 22 (14):10601–9. doi: 10.1007/s11356-015-4271-7.
  • Amiri Forotaghe, Z., M. K. Souri, M. Ghanbari Jahromi, and A. Mohammadi Torkashvand. 2022. Influence of humic acid application on onion growth characteristics under water deficit conditions. Journal of Plant Nutrition.45 (7):1030–40. doi: 10.1080/01904167.2021.1994604.
  • Apel, K., and H. Hirt. 2004. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology 55 (1):373–99. doi: 10.1146/annurev.arplant.55.031903.141701.
  • Aydin, A., K. Canan, and T. Metin. 2012. Humic acid application alleviate salinity stress of bean (Phaseolus vulgaris L.) plants decreasing membrane leakage. African Journal of Agricultural Research 7:1073–86.
  • Azedo-Silva, J., J. Osório, F. Fonseca, and M. J. Correia. 2004. Effects of soil drying and subsequent re-watering on the activity of nitrate reductase in roots and leaves of Helianthus annuus. Functional Plant Biology 31 (6):611–21. doi: 10.1071/FP04018.
  • Bae, S.-H, and H.-J. Suh. 2007. Antioxidant activities of five different mulberry cultivars in Korea. LWT – Food Science and Technology 40 (6):955–62. doi: 10.1016/j.lwt.2006.06.007.
  • Barbieri, G., A. Bottino, E. Di Stasio, S. Vallone, and A. Maggio. 2011. Proline and light as quality enhancers of rocket (Eruca sativa Miller) grown under saline conditions. Scientia Horticulturae 128 (4):393–400. doi: 10.1016/j.scienta.2011.02.010.
  • Barzegar, T., P. Moradi, J. Nikbakht, and Z. Ghahremani. 2016. Physiological response of Okra cv. Kano to foliar application of putrescine and humic acid under water deficit stress. International Journal of Horticultural Science and Technology 3:187–97.
  • Bell, L., M. J. Oruna-Concha, and C. Wagstaff. 2015. Identification and quantification of glucosinolate and flavonol compounds in rocket salad (Eruca sativa, Eruca vesicaria and Diplotaxis tenuifolia) by LC–MS: Highlighting the potential for improving nutritional value of rocket crops. Food Chemistry 172:852–61. doi: 10.1016/j.foodchem.2014.09.116.
  • Bronick, C. J., and R. Lal. 2005. Soil structure and management: A review. Geoderma 124 (1–2):3–22. doi: 10.1016/j.geoderma.2004.03.005.
  • Bolus, S. T., M. N. El-Shourbagy, and N. I. Nissak. 1972. Studies on the effect of salinity on the epidermis and mesophyll tissues on some Ricimus communis varities. Desert Institute Bull 22:421–32.
  • Bonasia, A., C. Lazzizera, A. Elia, and G. Conversa. 2017. Nutritional, biophysical and physiological characteristics of wild rocket genotypes as affected by soilless cultivation system, salinity level of nutrient solution and growing period. Frontiers in Plant Science 8:300. doi: 10.3389/fpls.2017.00300.
  • Candido, V., F. Boari, V. Cantore, D. Castronuovo, M. Denora, L. Sergio, M. Todorovic, and M. I. Schiattone. 2023. Interactive effect of water regime, nitrogen rate and biostimulant application on physiological and biochemical traits of wild rocket. Agricultural Water Management 277:108075. doi: 10.1016/j.agwat.2022.108075.
  • Canellas, L. P., F. L. Olivares, N. O. Aguiar, D. L. Jones, A. Nebbioso, P. Mazzei, and A. Piccolo. 2015. Humic and fulvic acids as biostimulants in horticulture. Scientia Horticulturae 196:15–27. doi: 10.1016/j.scienta.2015.09.013.
  • Carillo, P., G. Mastrolonardo, F. Nacca, and A. Fuggi. 2005. Nitrate reductase in durum wheat seedlings as affected by nitrate nutrition and salinity. Functional Plant Biology 32 (3):209–19. doi: 10.1071/FP04184.
  • Cataldo, D. A., M. Maroon, L. E. Schrader, and V. L. Youngs. 1975. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Communications in Soil Science and Plant Analysis.6 (1):71–80. doi: 10.1080/00103627509366547.
  • Chaski, C., and S. A. Petropoulos. 2022. The Alleviation effects of biostimulants application on lettuce plants grown under deficit irrigation. Horticulturae 8 (11):1089. doi: 10.3390/horticulturae8111089.
  • Chen, Q., Z. Qu, G. Ma, W. Wang, J. Dai, M. Zhang, Z. Wei, and Z. Liu. 2022. Humic acid modulates growth, photosynthesis, hormone and osmolytes system of maize under drought conditions. Agricultural Water Management 263:107447. doi: 10.1016/j.agwat.2021.107447.
  • Cunniff, P., Association of Official Analytical Chemists. 1995. Official methods of analysis of AOAC international. Washington, DC: Association of Official Analytical Chemists.
  • Delfine, S., R. Tognetti, E. Desiderio, and A. Alvino. 2005. Effect of foliar application of N and humic acids on growth and yield of durum wheat. Agronomy for Sustainable Development 25 (2):183–91. doi: 10.1051/agro:2005017.
  • Ding, X., Y. Jiang, H. Zhao, D. Guo, L. He, F. Liu, Q. Zhou, D. Nandwani, D. Hui, J. Yu, et al. 2018. Electrical conductivity of nutrient solution influenced photosynthesis, quality, and antioxidant enzyme activity of pakchoi (Brassica campestris L. ssp. Chinensis) in a hydroponic system. PloS One 13 (8):e0202090. doi: 10.1371/journal.pone.0202090.
  • Du Jardin, P. 2015. Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae 196:3–14. doi: 10.1016/j.scienta.2015.09.021.
  • Esringü, A., C. Kant, E. Yildirim, H. Karlidag, and M. Turan. 2011. Ameliorative effect of foliar nutrient supply on growth, inorganic ions, membrane permeability, and leaf relative water content of physalis plants under salinity stress. Communications in Soil Science and Plant Analysis.42 (4):408–23. doi: 10.1080/00103624.2011.542220.
  • Fallovo, C., Y. Rouphael, E. Rea, A. Battistelli, and G. Colla. 2009. Nutrient solution concentration and growing season affect yield and quality of Lactuca sativa L. var. acephala in floating raft culture. Journal of the Science of Food and Agriculture 89 (10):1682–9. doi: 10.1002/jsfa.3641.
  • Foyer, C. H., M. Lelandais, and K. J. Kunert. 1994. Photooxidative stress in plants. Physiologia Plantarum 92 (4):696–717. doi: 10.1034/j.1399-3054.1994.920422.x.
  • García, A. C., R. L. L. Berbara, L. P. Farías, et al. 2012. Humic acids of vermicompost as an ecological pathway to increase resistance of rice seedlings to water stress. African Journal of Biotechnology 11:3125–34.
  • Garg, G., and V. Sharma. 2014. Eruca sativa (L.): Botanical description, crop improvement, and medicinal properties. Journal of Herbs Spices & Medicinal Plants. 20 (2):171–82. doi: 10.1080/10496475.2013.848254.
  • Ghaderi, N., and A. Siosemardeh. 2011. Response to drought stress of two strawberry cultivars (cv. Kurdistan and Selva). Horticulture, Environment, and Biotechnology 52 (1):6–12. doi: 10.1007/s13580-011-0019-6.
  • Grattan, S. R., and C. M. Grieve. 1998. Salinity–mineral nutrient relations in horticultural crops. Sci Hortic 78 (1–4):127–57. doi: 10.1016/S0304-4238(98)00192-7.
  • Haghighi, M., M. Kafi, and P. Fang. 2012. Photosynthetic activity and N metabolism of lettuce as affected by humic acid. International Journal of Vegetable Science 18 (2):182–9. doi: 10.1080/19315260.2011.605826.
  • Haghighi, M., A. Nikbakht, and M. Pessarakli. 2016. Effects of humic acid on remediation of the nutritional deficiency of gerbera in hydroponic culture. Journal of Plant Nutrition.39 (5):702–13. doi: 10.1080/01904167.2015.1087560.
  • Haghighi, M., and J. A. Teixeira Da Silva. 2013. Amendment of hydroponic nutrient solution with humic acid and glutamic acid in tomato (Lycopersicon esculentum Mill.) culture. Soil Science & Plant Nutrition. 59 (4):642–8. doi: 10.1080/00380768.2013.809599.
  • Haider, G., H.-W. Koyro, F. Azam, D. Steffens, C. Müller, and C. Kammann. 2015. Biochar but not humic acid product amendment affected maize yields via improving plant-soil moisture relations. Plant and Soil 395 (1–2):141–57. doi: 10.1007/s11104-014-2294-3.
  • Haydon, M. J., Á. Román, and W. Arshad. 2015. Nutrient homeostasis within the plant circadian network. Frontiers in Plant Science 6:299. doi: 10.3389/fpls.2015.00299.
  • Hooshmand, M., M. Albaji, S. Boroomand Nasab, and N. Alam Zadeh Ansari. 2019. The effect of deficit irrigation on yield and yield components of greenhouse tomato (Solanum lycopersicum) in hydroponic culture in Ahvaz region, Iran. Scientia Horticulturae 254:84–90. doi: 10.1016/j.scienta.2019.04.084.
  • Irigoyen, J. J., D. W. Einerich, and M. Sánchez‐Díaz. 1992. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiologia Plantarum.84 (1):55–60. doi: 10.1111/j.1399-3054.1992.tb08764.x.
  • Jarrell, W. M., and R. B. Beverly. 1981. The dilution effect in plant nutrition studies. Advances in Agronomy 34:197–224.
  • Khorasaninejad, S., A. Alizadeh Ahmadabadi, and K. Hemmati. 2018. The effect of humic acid on leaf morphophysiological and phytochemical properties of Echinacea purpurea L. under water deficit stress. Scientia Horticulturae 239:314–23. doi: 10.1016/j.scienta.2018.03.015.
  • Lahbouki, S., R. Ben-Laouane, A. Outzourhit, and A. Meddich. 2022. The combination of vermicompost and arbuscular mycorrhizal fungi improves the physiological properties and chemical composition of Opuntia ficus-indica under semi-arid conditions in the field. Arid Land and Research Management 37 (2):284–309. doi: 10.1080/15324982.2022.2115952.
  • Larrauri, J. A., C. Sánchez-Moreno, and F. Saura-Calixto. 1998. Effect of temperature on the free radical scavenging capacity of extracts from red and white grape pomace peels. Journal of Agricultural and Food Chemistry 46 (7):2694–7. doi: 10.1021/jf980017p.
  • Lichtenthaler, H. K. 1987. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology.148:350–82.
  • Liu, C., R. J. Cooper, and D. C. Bowman. 1998. Humic acid application affects photosynthesis, root development, and nutrient content of creeping bentgrass. HortScience 33 (6):1023–5. doi: 10.21273/HORTSCI.33.6.1023.
  • Malik, Z., N. Malik, I. Noor, M. Kamran, A. Parveen, M. Ali, F. Sabir, H. O. Elansary, T. K. Z. El-Abedin, E. A. Mahmoud, et al. 2023. Combined effect of rice-straw biochar and humic acid on growth, antioxidative capacity, and ion uptake in maize (Zea mays L.) grown under saline soil conditions. Journal of Plant Growth Regulation 42 (5):3211–28. doi: 10.1007/s00344-022-10786-z.
  • Man-Hong, Y., Z. Lei, X. Sheng-Tao, N. B. McLaughlin, and L. Jing-Hui. 2020. Effect of water soluble humic acid applied to potato foliage on plant growth, photosynthesis characteristics and fresh tuber yield under different water deficits. Scientific Reports 10 (1):7854. doi: 10.1038/s41598-020-63925-5.
  • Mitchell, A. E., Y.-J. Hong, E. Koh, D. M. Barrett, D. E. Bryant, R. F. Denison, and S. Kaffka. 2007. Ten-year comparison of the influence of organic and conventional crop management practices on the content of flavonoids in tomatoes. Journal of Agricultural and Food Chemistry 55 (15):6154–9. doi: 10.1021/jf070344+.
  • Mora, V., E. Bacaicoa, A.-M. Zamarreño, E. Aguirre, M. Garnica, M. Fuentes, and J.-M. García-Mina. 2010. Action of humic acid on promotion of cucumber shoot growth involves nitrate-related changes associated with the root-to-shoot distribution of cytokinins, polyamines and mineral nutrients. Journal of Plant Physiology 167 (8):633–42. doi: 10.1016/j.jplph.2009.11.018.
  • Morano, G., C. Amalfitano, M. Sellitto, A. Cuciniello, R. Maiello, and G. Caruso. 2017. Effects of nutritive solution electrical conductivity and plant density on growth, yield and quality of sweet basil grown in gullies by subirrigation. Advances in Horticultural Science. 31:25–30. doi: 10.13128/ahs-20722.
  • Mouradi, M., M. Farissi, A. Bouizgaren, B. Makoudi, A. Kabbadj, A.-A. Very, H. Sentenac, A. Qaddourya, and C. Ghoulam. 2016. Effects of water deficit on growth, nodulation and physiological and biochemical processes in Medicago sativa-rhizobia symbiotic association. Arid Land Research and Management 30 (2):193–208. doi: 10.1080/15324982.2015.1073194.
  • Muscolo, A., M. Sidari, E. Attinà, O. Francioso, V. Tugnoli, and S. Nardi. 2007. Biological activity of humic substances is related to their chemical structure. Soil Science Society of America Journal 71 (1):75–85. doi: 10.2136/sssaj2006.0055.
  • Nardi, S., D. Pizzeghello, A. Muscolo, and A. Vianello. 2002. Physiological effects of humic substances on higher plants. Soil Biology and Biochemistry. 34 (11):1527–36. doi: 10.1016/S0038-0717(02)00174-8.
  • Nemali, K. S., and M. W. van Iersel. 2004. Light intensity and fertilizer concentration: I. Estimating optimal fertilizer concentrations from water-use efficiency of wax begonia. HortScience 39 (6):1287–92. doi: 10.21273/HORTSCI.39.6.1287.
  • Nikbakht, A., M. Kafi, M. Babalar, Y. P. Xia, A. Luo, and N-a Etemadi. 2008. Effect of humic acid on plant growth, nutrient uptake, and postharvest life of gerbera. Journal of Plant Nutrition 31 (12):2155–67. doi: 10.1080/01904160802462819.
  • Parida, A. K., and A. B. Das. 2005. Salt tolerance and salinity effects on plants: A review. Ecotoxicology and Environmental Safety 60 (3):324–49. doi: 10.1016/j.ecoenv.2004.06.010.
  • Park, Y.-S., S.-T. Jung, S.-G. Kang, B. G. Heo, P. Arancibia-Avila, F. Toledo, J. Drzewiecki, J. Namiesnik, and S. Gorinstein. 2008. Antioxidants and proteins in ethylene-treated kiwifruits. Food Chemistry.107 (2):640–8. doi: 10.1016/j.foodchem.2007.08.070.
  • Petretto, G. L., P. P. Urgeghe, D. Massa, and S. Melito. 2019. Effect of salinity (NaCl) on plant growth, nutrient content, and glucosinolate hydrolysis products trends in rocket genotypes. Plant Physiology and Biochemistry 141:30–9. doi: 10.1016/j.plaphy.2019.05.012.
  • Saidimoradi, D., N. Ghaderi, and T. Javadi. 2019. Salinity stress mitigation by humic acid application in strawberry (Fragaria x ananassa Duch.). Scientia Horticulturae 256:108594. doi: 10.1016/j.scienta.2019.108594.
  • Sairam, R. K., K. V. Rao, and G. C. Srivastava. 2002. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Science.163 (5):1037–46. doi: 10.1016/S0168-9452(02)00278-9.
  • Sairam, R. K., and G. C. Srivastava. 2001. Water stress tolerance of wheat (Triticum aestivum L.): variations in hydrogen peroxide accumulation and antioxidant activity in tolerant and susceptible genotypes. Journal of Agronomy and Crop Science 186 (1):63–70. doi: 10.1046/j.1439-037x.2001.00461.x.
  • Sarabi, B., N. Ghaderi, and J. Ghashghaie. 2022. Light-emitting diode combined with humic acid improve the nutritional quality and enzyme activities of nitrate assimilation in rocket (Eruca sativa (Mill.) Thell.). Plant Physiology and Biochemistry 187:11–24. doi: 10.1016/j.plaphy.2022.07.035.
  • Schiattone, M. I., R. Viggiani, D. Di Venere, L. Sergio, V. Cantore, M. Todorovic, M. Perniola, and V. Candido. 2018. Impact of irrigation regime and nitrogen rate on yield, quality and water use efficiency of wild rocket under greenhouse conditions. Scientia Horticulturae 229:182–92. doi: 10.1016/j.scienta.2017.10.036.
  • Sharma, N., B. D. Pant, and J. Srivastava. 2017. Eruca Sativa-A pharmacological review. Journal of Indian Botanical Society 96:260–5.
  • Silber, A., and A. Bar-Tal. 2008. Nutrition of substrate-grown plants. In Soilless culture: Theory and practice, ed. M. Raviv and H. Lieth, 291–340. San Diego, CA: Academic Press.
  • Song, C.-J., K.-M. Ma, L.-Y. Qu, Y. Liu, X.-L. Xu, B.-J. Fu, and J.-F. Zhong. 2010. Interactive effects of water, nitrogen and phosphorus on the growth, biomass partitioning and water-use efficiency of Bauhinia faberi seedlings. Journal of Arid Environments. 74 (9):1003–12. doi: 10.1016/j.jaridenv.2010.02.003.
  • Sorkhi, F. 2020. Effect of irrigation intervals and humic acid on physiological and biochemical characteristic on medicinal plant of Thymus vulgaris. Iranian Journal of Plant Physiology 10:3367–78. doi: 10.30495/IJPP.2020.1890199.1191.
  • Treutter, D. 2006. Significance of flavonoids in plant resistance: A review. Environmental Chemistry Letters 4 (3):147–57. doi: 10.1007/s10311-006-0068-8.
  • Urlić, B., G. Dumičić, M. Romić, and S. G. Ban. 2017. The effect of N and NaCl on growth, yield, and nitrate content of salad rocket (Eruca sativa Mill. Journal of Plant Nutrition. 40 (18):2611–8. doi: 10.1080/01904167.2017.1381122.
  • Vijitha, R., and S. Mahendran. 2010. Effect of moisture stress at different growth stages of tomato plant (Lycopersicon esculentum Mill.) on yield and quality of fruits. Journal of Science of the University of Kelaniya 5:1–11. doi: 10.4038/josuk.v5i0.4086.
  • Winter, S. R. 1990. Sugarbeet response to nitrogen as affected by seasonal irrigation. Agronomy Journal.82 (5):984–8. doi: 10.2134/agronj1990.00021962008200050029x.
  • Wu, S., C. Hu, Q. Tan, S. Xu, and X. Sun. 2017. Nitric oxide mediates molybdenum-induced antioxidant defense in wheat under drought stress. Frontiers in Plant Science 8:1085. doi: 10.3389/fpls.2017.01085.
  • Xiong, Z.-T., C. Liu, and B. Geng. 2006. Phytotoxic effects of copper on nitrogen metabolism and plant growth in Brassica pekinensis Rupr. Ecotoxicology and Environmental Safety 64 (3):273–80. doi: 10.1016/j.ecoenv.2006.02.003.
  • Zafar-Pashanezhad, M., E. Shahbazi, P. Golkar, and B. Shiran. 2020. Genetic variation of Eruca sativa L. genotypes revealed by agro-morphological traits and ISSR molecular markers. Industrial Crops and Products.145:111992. doi: 10.1016/j.indcrop.2019.111992.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.