107
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Facile gamma-ray induced synthesis of reduced graphene oxide decorated with silver nanoparticles: a green approach for symmetric supercapacitor applications

, , ORCID Icon, , , & show all
Pages 442-451 | Received 23 Oct 2023, Accepted 04 Dec 2023, Published online: 15 Dec 2023

References

  • Ahmed, M. A.; Mohamed, A. A. Recent Progress in Semiconductor/Graphene Photocatalysts: Synthesis, Photocatalytic Applications, and Challenges. RSC Adv. 2023, 13, 421–439. DOI: 10.1039/D2RA07225D.
  • Verma, M. L.; Dhanya, B. S.; Saini, R.j.; Das, A.; Varma, R. S.; Sukriti. Synthesis and Application of Graphene-Based Sensors in Biology: A Review. Environ. Chem. Lett. 2022, 20, 2189–2212. DOI: 10.1007/s10311-022-01404-1.
  • Atta, M.; Habieb, M.; Mohamed, M. A. E. H.; Lotfy, D.; Taha, E. O. Radiation-Assisted Reduction of Graphene Oxide by Aloe Vera and Ginger and Their Antioxidant and anti-Inflammatory Roles against Male Mice Liver Injury Induced by Gamma Radiation. New J. Chem. 2022, 46, 4406–4420. DOI: 10.1039/D1NJ05000A.
  • Abdelsalam, H.; Atta, M. M.; Saroka, V. A.; Zhang, Q. Anomalous Magnetic and Transport Properties of Laterally Connected Graphene Quantum Dots. J. Mater. Sci. 2022, 57, 14356–14370. DOI: 10.1007/s10853-022-07524-x.
  • Feng, H.; Yanan, D.; Ting, X.; Yongzhi, L.; Xin, Z.; Jianyi, X.; Guofang, Z.; Ying, C.; Yanghuan, Z. Influence of Adding Graphene on the Hydrogen Storage Thermodynamics and Kinetics of as-Milled CeMg12–Ni Alloy. Int. J. of Hydrog. Energy 2023, 48, 13213–13226. DOI: 10.1016/j.ijhydene.2022.12.227.
  • Atta, M. M.; Zakaly, H. M. H.; Almousa, N.; Abdel Reheem, A. M.; Madani, M.; Kandil, U.; Henaish, A. M. A.; Taha, E. O. Nitrogen Plasma Synthesis of Flexible Supercapacitors Based on Reduced Graphene Oxide/Aloe Vera/Carbon Nanotubes Nanocomposite. Carbon Lett. 2023, 33, 1639–1648. DOI: 10.1007/s42823-023-00548-6.
  • Abdelsalam, H.; Saroka, V. A.; Atta, M. M.; Osman, W.; Zhang, Q. Tunable Electro-Optical Properties of Doped Chiral Graphene Nanoribbons. Chem. Phys. 2021, 544, 111116. DOI: 10.1016/j.chemphys.2021.111116.
  • Hamid, M. M. A.; Alruqi, M.; Elsayed, A. M.; Atta, M.; Hanafi, H.; Rabia, M. Testing the Photo-Electrocatalytic Hydrogen Production of Polypyrrole Quantum Dot by Combining with Graphene Oxide Sheets on Glass Slide. J. Mater. Sci: Mater. Electron. 2023, 34, 831. DOI: 10.1007/s10854-023-10229-9.
  • Sekar, S.; Arumugam, P.; Rajamanickam, G. Synthesis of Hydrothermally Derived Boron and Sulfur-Incorporated Reduced Graphene Oxide Sheets for Supercapacitor Applications. Fuller., Nanotub. Carbon Nanostr. 2023, 31, 845–855. DOI: 10.1080/1536383X.2023.2213359.
  • Ates, M.; Caliskan, S.; Ozten, E. A Ternary Nanocomposite of Reduced Graphene Oxide, Ag Nanoparticle and Polythiophene Used for Supercapacitors. Fuller., Nanotub. Carbon Nanostr. 2018, 26, 360–369. DOI: 10.1080/1536383X.2018.1438414.
  • Atta, M.; Zhang, Q. Recent Advances in 2D Materials for Smart Textiles. FlatChem. 2023, 42, 100562. DOI: 10.1016/j.flatc.2023.100562.
  • Yang, Z.; Wang, L.; Cui, Y.; Shi, Z.; Wang, M.; Fei, W. High Strength and Ductility of Graphene-like Carbon Nanosheet/Copper Composites Fabricated Directly from Commercial Oleic Acid Coated Copper Powders. Nanoscale 2018, 10, 16990–16995. DOI: 10.1039/C8NR04451A.
  • Kumar, M. A.; Siddhardha, R. S.; Nived, K.; Lakshminarayanan, V.; Ramamurthy, S. S. Ultra-Selective Dopamine Detection in an Excess of Ascorbic Acid and Uric Acid Using Pristine Palladium Nanoparticles Decorated Graphene Modified Glassy Carbon Electrode. J. Electrochem. Soc. 2015, 162, H651–H660. DOI: 10.1149/2.0691509jes.
  • Nayak, S. P.; Ramamurthy, S. S.; Kumar, J. K. Green Synthesis of Silver Nanoparticles Decorated Reduced Graphene Oxide Nanocomposite as an Electrocatalytic Platform for the Simultaneous Detection of Dopamine and Uric Acid. Mater. Chem. Phys. 2020, 252, 123302. DOI: 10.1016/j.matchemphys.2020.123302.
  • Zafar, M. A.; Liu, Y.; Allende, S.; Jacob, M. V. Electrochemical Sensing of Oxalic Acid Using Silver Nanoparticles Loaded Nitrogen-Doped Graphene Oxide. Carbon Trends 2022, 8, 100188. DOI: 10.1016/j.cartre.2022.100188.
  • Kerli, S.; Bhardwaj, S.; Lın, W.; Gupta, R. K. Silver-Doped Reduced Graphene Oxide/Pani Composite Synthesis and Their Supercapacitor Applications. J. Organomet. Chem. 2023, 995, 122725. DOI: 10.1016/j.jorganchem.2023.122725.
  • Ghosh, S.; Ganguly, S.; Das, P.; Das, T. K.; Bose, M.; Singha, N. K.; Das, A. K.; Das, N. C. Fabrication of Reduced Graphene Oxide/Silver Nanoparticles Decorated Conductive Cotton Fabric for High Performing Electromagnetic Interference Shielding and Antibacterial Application. Fibers Polym. 2019, 20, 1161–1171. DOI: 10.1007/s12221-019-1001-7.
  • Zoladek, S.; Blicharska-Sobolewska, M.; Krata, A. A.; Rutkowska, I. A.; Wadas, A.; Miecznikowski, K.; Negro, E.; Vezzù, K.; Di Noto, V.; Kulesza, P. J. Heteropolytungstate-Assisted Fabrication and Deposition of Catalytic Silver Nanoparticles on Different Reduced Graphene Oxide Supports: Electroreduction of Oxygen in Alkaline Electrolyte. J. Electroanal Chem. 2020, 875, 114694. DOI: 10.1016/j.jelechem.2020.114694.
  • Wang, S.; Zhang, Y.; Ma, H.-L.; Zhang, Q.; Xu, W.; Peng, J.; Li, J.; Yu, Z.-Z.; Zhai, M. Ionic-Liquid-Assisted Facile Synthesis of Silver Nanoparticle-Reduced Graphene Oxide Hybrids by Gamma Irradiation. Carbon 2013, 55, 245–252. DOI: 10.1016/j.carbon.2012.12.033.
  • Flores-Rojas, G.; López-Saucedo, F.; Bucio, E. Gamma-Irradiation Applied in the Synthesis of Metallic and Organic Nanoparticles: A Short Review. Radiat. Phys. Chem. 2020, 169, 107962. DOI: 10.1016/j.radphyschem.2018.08.011.
  • Jung, C.-H.; Park, Y.-W.; Hwang, I.-T.; Go, Y.-J.; Na, S.-I.; Shin, K.; Lee, J.-S.; Choi, J.-H. Eco-Friendly and Simple Radiation-Based Preparation of Graphene and Its Application to Organic Solar Cells. J. Phys. D: Appl. Phys. 2013, 47, 015105. DOI: 10.1088/0022-3727/47/1/015105.
  • Yang, C.; Gong, J.; Zeng, P.; Yang, X.; Liang, R.; Ou, Q.; Zhang, S. Fast Room-Temperature Reduction of Graphene Oxide by Methane/Argon Plasma for Flexible Electronics. Appl. Surf. Sci. 2018, 452, 481–486. DOI: 10.1016/j.apsusc.2018.04.272.
  • Voiry, D.; Yang, J.; Kupferberg, J.; Fullon, R.; Lee, C.; Jeong, H. Y.; Shin, H. S.; Chhowalla, M. High-Quality Graphene via Microwave Reduction of Solution-Exfoliated Graphene Oxide. Science 2016, 353, 1413–1416. DOI: 10.1126/science.aah3398.
  • Luo, K.; Li, J.; Li, L.; Li, J. A Facile Method for Preparing 3D Graphene/Ag Aerogel via Gamma-Ray Irradiation. Fuller., Nanotub. Carbon Nanostr. 2016, 24, 720–724. DOI: 10.1080/1536383X.2016.1224855.
  • Atta, M.; Ashry, H.; Nasr, G.; Abd El-Rehim, H. Electrical, Thermal and Electrochemical Properties of γ-Ray-Reduced Graphene Oxide. Int. J. Miner. Metall. Mater. 2021, 28, 1726–1734. DOI: 10.1007/s12613-020-2146-5.
  • Belloni, J.; Mostafavi, M.; Remita, H.; Marignier, J.-L.; Delcourt, M.-O. Radiation-Induced Synthesis of Mono-and Multi-Metallic Clusters and Nanocolloids. New J. Chem. 1998, 22, 1239–1255. DOI: 10.1039/a801445k.
  • Lu, M.; Li, J.; Li, L.; Lin, J.; Li, J. Fabrication of Ultralight 3D Graphene/Pt Aerogel via in Situ Gamma-Ray Irradiation and Its Application for the Catalytic Degradation of Methyl Orange. Fuller., Nanotub. Carbon Nanostr 2020, 28, 425–434. DOI: 10.1080/1536383X.2019.1695602.
  • Olorunkosebi, A. A.; Olumurewa, K. O.; Fasakin, O.; Adedeji, A. V.; Taleatu, B.; Olofinjana, B.; Eleruja, M. A. Comparative Investigation of Gas Sensing Performance of Liquefied Petroleum Gas Using Green Reduced Graphene Oxide-Based Sensors. RSC Adv. 2023, 13, 16630–16642. DOI: 10.1039/D3RA01684F.
  • Olorunkosebi, A. A.; Eleruja, M. A.; Adedeji, A. V.; Olofinjana, B.; Fasakin, O.; Omotoso, E.; Oyedotun, K. O.; Ajayi, E. O. B.; Manyala, N. Optimization of Graphene Oxide through Various Hummers’ Methods and Comparative Reduction Using Green Approach. Diam. Relat. Mater 2021, 117, 108456. DOI: 10.1016/j.diamond.2021.108456.
  • Faniyi, I. O.; Fasakin, O.; Olofinjana, B.; Adekunle, A. S.; Oluwasusi, T. V.; Eleruja, M. A.; Ajayi, E. O. B. The Comparative Analyses of Reduced Graphene Oxide (RGO) Prepared via Green, Mild and Chemical Approaches. SN Appl. Sci. 2019, 1, 7. DOI: 10.1007/s42452-019-1188-7.
  • Kulshrestha, S.; Qayyum, S.; Khan, A. U. Antibiofilm Efficacy of Green Synthesized Graphene Oxide-Silver Nanocomposite Using Lagerstroemia Speciosa Floral Extract: A Comparative Study on Inhibition of Gram-Positive and Gram-Negative Biofilms. Microb. Pathog. 2017, 103, 167–177. DOI: 10.1016/j.micpath.2016.12.022.
  • Rizkiyah, D. N.; Putra, N. R.; Yunus, M. A. C.; Veza, I.; Irianto, I.; Aziz, A. H. A.; Rahayuningsih, S.; Yuniarti, E.; Ikhwani, I. Insight into Green Extraction for Roselle as a Source of Natural Red Pigments: A Review. Molecules 2023, 28, 1336. DOI: 10.3390/molecules28031336.
  • Dehankar, H. B.; Mali, P. S.; Kumar, P. Edible Composite Films Based on Chitosan/Guar Gum with ZnONPs and Roselle Calyx Extract for Active Food Packaging. Appl. Food Res. 2023, 3, 100276. DOI: 10.1016/j.afres.2023.100276.
  • Aziz, W. J.; Sabry, R. S.; Q Ali, S. Green Synthesis and Characterization of Cr2O3 Nanoparticle Prepared by Using CrCl3. 6H2O and Roselle Extract. AIP Conference Proceedings: AIP Publishing; 2022. DOI: 10.1063/5.0094690.
  • Almisbah, S. R.; Mohammed, A. M.; Elgamouz, A.; Bihi, A.; Kawde, A. Green Synthesis of CuO Nanoparticles Using Hibiscus Sabdariffa L. extract to Treat Wastewater in Soba Sewage Treatment Plant, Sudan. Water Sci. Technol. 2023, 87, 3059–3071. DOI: 10.2166/wst.2023.153.
  • Animasahun, L. O.; Owoeye, V. A.; Olumurewa, K. O.; Buremoh, W.; Busari, H. K.; Ajayeoba, Y. A.; Popoola, M. M.; Adeleke, J. T.; Adewinbi, S. A. Enhanced Optoelectronic and Supercapacitive Performance of Electrodeposited Mn3O4 Thin Film Prepared from Two-Electrode: An Effect of Zn-Ion Incorporation. Results Surf. Interf 2023, 11, 100123. DOI: 10.1016/j.rsurfi.2023.100123.
  • Adewinbi, S. A.; Maphiri, V. M.; Taleatu, B. A.; Marnadu, R.; Shkir, M.; Hakami, J.; Kim, W. K.; Gedi, S. Binder-Less Fabrication, Some Surface Studies, and Enhanced Electrochemical Performance of Co, Cu-Embedded MnO2 Thin Film Electrodes for Supercapacitor Application. Ceram Intern 2022, 48, 26312–26325. DOI: 10.1016/j.ceramint.2022.05.315.
  • Simon, R.; Chakraborty, S.; Darshini, K.; Mary, N. Electrolyte Dependent Performance of Graphene–Mixed Metal Oxide Composites for Enhanced Supercapacitor Applications. SN Appl. Sci. 2020, 2, 1–11. DOI: 10.1007/s42452-020-03708-9.
  • Xavier, J. R. Synthesis and Electrochemical Performance of rGO Wrapped Mixed Metal Oxide and Sulfide Nanocomposite for Superior Energy Storage Applications. Fuller., Nanotub. Carbon Nanostr. 2023, 31, 652–666. DOI: 10.1080/1536383X.2023.2198228.
  • Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved Synthesis of Graphene Oxide. ACS Nano. 2010, 4, 4806–4814. DOI: 10.1021/nn1006368.
  • Awad, E. H.; El-Nemr, K. F.; Atta, M.; Abdel-Hakim, A.; Sharaf, A. Electromagnetic Interference Shielding Efficiency of Irradiated Wood-Plastic Composites Based on Graphene Oxide Nanoparticles. Radiat Phys Chem 2023, 203, 110629. DOI: 10.1016/j.radphyschem.2022.110629.
  • Atta, M.; Abou‐Laila, M.; Abdelwahed, M. H.; Dwidar, S. A.; Desouky, O. Structural, Mechanical, and Thermal Features of PVA/Starch/Graphene Oxide Nanocomposite Enriched with WO3 as Gamma–Ray Radiation Shielding Materials for Medical Applications. Polymer Engin. Sci. 2023, 63, 3843–3854. DOI: 10.1002/pen.26490.
  • Taha, E. O.; Alyousef, H. A.; Dorgham, A. M.; Hemeda, O. M.; Zakaly, H. M.; Noga, P.; Abdelhamied, M. M.; Atta, M. M. Electron Beam Irradiation and Carbon Nanotubes Influence on PVDF-PZT Composites for Energy Harvesting and Storage Applications: Changes in Dynamic-Mechanical and Dielectric Properties. Inorg. Chem. Commun. 2023, 151, 110624. DOI: 10.1016/j.inoche.2023.110624.
  • Kodous, A. S.; Atta, M.; Abdel-Hamid, G. R.; Ashry, H. Anti-Metastatic Cancer Activity of Ultrasonic Synthesized Reduced Graphene Oxide/Copper Composites. Chem. Pap. 2022, 76, 373–384. DOI: 10.1007/s11696-021-01866-7.
  • Sabzi, M.; Mersagh Dezfuli, S. A Study on the Effect of Compositing Silver Oxide Nanoparticles by Carbon on the Electrochemical Behavior and Electronic Properties of Zinc‐Silver Oxide Batteries. Int. J. Applied Ceramic Tech. 2018, 15, 1446–1458. DOI: 10.1111/ijac.13047.
  • Gauri, B.; Vidya, K.; Sharada, D.; Shobha, W. Synthesis and Characterization of Ag/AgO Nanoparticles as Alcohol Sensor. Res. J. Chem. Environ. 2016, 20, 1–5.
  • Gu, D.; Chang, X.; Zhai, X.; Sun, S.; Li, Z.; Liu, T.; Dong, L.; Yin, Y. Efficient Synthesis of Silver-Reduced Graphene Oxide Composites with Prolonged Antibacterial Effects. Ceram. Intern. 2016, 42, 9769–9778. DOI: 10.1016/j.ceramint.2016.03.069.
  • Esmaile, F.; Koohestani, H.; Abdollah-Pour, H. Characterization and Antibacterial Activity of Silver Nanoparticles Green Synthesized Using Ziziphora Clinopodioides Extract. Environ Nanotechnol. Monit. & Manag. 2020, 14, 100303. DOI: 10.1016/j.enmm.2020.100303.
  • Ibrahim, H. M. Green Synthesis and Characterization of Silver Nanoparticles Using Banana Peel Extract and Their Antimicrobial Activity against Representative Microorganisms. J. Radiat. Res. Appl. Sci. 2015, 8, 265–275. DOI: 10.1016/j.jrras.2015.01.007.
  • Melkamu, W. W.; Bitew, L. T. Green Synthesis of Silver Nanoparticles Using Hagenia Abyssinica (Bruce) JF Gmel Plant Leaf Extract and Their Antibacterial and anti-Oxidant Activities. Heliyon 2021, 7, e08459. DOI: 10.1016/j.heliyon.2021.e08459.
  • Zhao, X.; Li, N.; Jing, M.; Zhang, Y.; Wang, W.; Liu, L.; Xu, Z.; Liu, L.; Li, F.; Wu, N. Monodispersed and Spherical Silver Nanoparticles/Graphene Nanocomposites from Gamma-Ray Assisted in-Situ Synthesis for Nitrite Electrochemical Sensing. Electrochim. Acta 2019, 295, 434–443. DOI: 10.1016/j.electacta.2018.10.039.
  • Atta, M.; Reheem, A. A. Effect of Nitrogen Ions on the Structural, Optical, and Thermal Properties of Polyvinyl Alcohol/Starch Blend. Curr. Appl. Phys 2022, 36, 43–50. DOI: 10.1016/j.cap.2021.11.016.
  • Ma, Z.; Jiang, X.; Jin, Y.; Wu, M.; Wang, L. Preparation of Nano-Silver Nanoparticles for Conductive Ink and the Correlations with Its Conductivity. Appl. Nanosci. 2022, 12, 1657–1665. DOI: 10.1007/s13204-022-02340-w.
  • Oluwalowo, A.; Nguyen, N.; Zhang, S.; Park, J. G.; Liang, R. Electrical and Thermal Conductivity Improvement of Carbon Nanotube and Silver Composites. Carbon 2019, 146, 224–231. DOI: 10.1016/j.carbon.2019.01.073.
  • Li, S.; Huang, J. A Nanofibrous Silver-Nanoparticle/Titania/Carbon Composite as an Anode Material for Lithium Ion Batteries. J. Mater. Chem. A 2015, 3, 4354–4360. DOI: 10.1039/C4TA06562J.
  • Şenol, A. M.; Metin, Ö.; Onganer, Y. A Facile Route for the Preparation of Silver Nanoparticles-Graphene Oxide Nanocomposites and Their Interactions with Pyronin Y Dye Molecules. Dyes and Pigment 2019, 162, 926–933. DOI: 10.1016/j.dyepig.2018.11.025.
  • Liu, C.-C.; Xu, H.; Wang, L.; Qin, X. Facile One-Pot Green Synthesis and Antibacterial Activities of GO/Ag Nanocomposites. Acta Metall. Sin. (Engl. Lett.) 2017, 30, 36–44. DOI: 10.1007/s40195-016-0517-8.
  • Youn, H.-C.; Bak, S.-M.; Kim, M.-S.; Jaye, C.; Fischer, D. A.; Lee, C.-W.; Yang, X.-Q.; Roh, K. C.; Kim, K.-B. High‐Surface‐Area Nitrogen‐Doped Reduced Graphene Oxide for Electric Double‐Layer Capacitors. ChemSusChem 2015, 8, 1875–1884. DOI: 10.1002/cssc.201500122.
  • Schultz, B. J.; Dennis, R. V.; Aldinger, J. P.; Jaye, C.; Wang, X.; Fischer, D. A.; Cartwright, A. N.; Banerjee, S. X-Ray Absorption Spectroscopy Studies of Electronic Structure Recovery and Nitrogen Local Structure upon Thermal Reduction of Graphene Oxide in an Ammonia Environment. Rsc Adv 2014, 4, 634–644. DOI: 10.1039/C3RA45591B.
  • Rohaizad, A.; Hir, Z. A. M.; Kamal, U. A. A. M.; Aspanut, Z.; Pam, A. A. Biosynthesis of Silver Nanoparticles Using Allium Sativum Extract Assisted by Solar Irradiation in a Composite with Graphene Oxide as Potent Adsorbents. Results Chem 2023, 5, 100731. DOI: 10.1016/j.rechem.2022.100731.
  • Hui, K. S.; Hui, K. N.; Dinh, D. A.; Tsang, C. H.; Cho, Y. R.; Zhou, W.; Hong, X.; Chun, H.-H. Green Synthesis of Dimension-Controlled Silver Nanoparticle–Graphene Oxide with in Situ Ultrasonication. Acta Mater 2014, 64, 326–332. DOI: 10.1016/j.actamat.2013.10.045.
  • Shi, M.; Shen, J.; Ma, H.; Li, Z.; Lu, X.; Li, N.; Ye, M. Preparation of Graphene–TiO2 Composite by Hydrothermal Method from Peroxotitanium Acid and Its Photocatalytic Properties. Coll Surf A: Physicochem Eng Asp 2012, 405, 30–37. DOI: 10.1016/j.colsurfa.2012.04.031.
  • Golsheikh, A. M.; Huang, N.; Lim, H.; Zakaria, R. One-Pot Sonochemical Synthesis of Reduced Graphene Oxide Uniformly Decorated with Ultrafine Silver Nanoparticles for Non-Enzymatic Detection of H 2 O 2 and Optical Detection of Mercury Ions. Rsc Adv 2014, 4, 36401–36411. DOI: 10.1039/C4RA05998K.
  • Ansari, A. R.; Ansari, S. A.; Parveen, N.; Ansari, M. O.; Osman, Z. Ag Nanoparticles Anchored Reduced Graphene Oxide Sheets@ Nickel Oxide Nanoflakes Nanocomposites for Enhanced Capacitive Performance of Supercapacitors. Inorg Chem Commun 2023, 150, 110519. DOI: 10.1016/j.inoche.2023.110519.
  • Ansari, A. R.; Ansari, S. A.; Parveen, N.; Ansari, M. O.; Osman, Z. Silver Nanoparticle Decorated on Reduced Graphene Oxide-Wrapped Manganese Oxide Nanorods as Electrode Materials for High-Performance Electrochemical Devices. Cryst 2022, 12, 389. DOI: 10.3390/cryst12030389.
  • Dubal, D.; Fulari, V.; Lokhande, C. Effect of Morphology on Supercapacitive Properties of Chemically Grown β-Ni (OH) 2 Thin Films. Microporous Mesoporous Mater 2012, 151, 511–516. DOI: 10.1016/j.micromeso.2011.08.034.
  • Pandit, B.; Sankapal, B. R. Highly Conductive Energy Efficient Electroless Anchored Silver Nanoparticles on MWCNTs as a Supercapacitive Electrode. New J. Chem. 2017, 41, 10808–10814. DOI: 10.1039/C7NJ01792H.
  • Naveed Ur Rehman, M.; Munawar, T.; Nadeem, M. S.; Mukhtar, F.; Maqbool, A.; Riaz, M.; Manzoor, S.; Ashiq, M. N.; Iqbal, F. Facile Synthesis and Characterization of Conducting Polymer-Metal Oxide Based Core-Shell PANI-Pr2O–NiO–Co3O4 Nanocomposite: As Electrode Material for Supercapacitor. Ceram Int 2021, 47, 18497–18509. DOI: 10.1016/j.ceramint.2021.03.17.
  • Le, L. T.; Ervin, M. H.; Qiu, H.; Fuchs, B. E.; Lee, W. Y. Graphene Supercapacitor Electrodes Fabricated by Inkjet Printing and Thermal Reduction of Graphene Oxide. Electrochem. Commun 2011, 13, 355–358. DOI: 10.1016/j.elecom.2011.01.023.
  • Han, J.; Zhang, L. L.; Lee, S.; Oh, J.; Lee, K.-S.; Potts, J. R.; Ji, J.; Zhao, X.; Ruoff, R. S.; Park, S. Generation of B-Doped Graphene Nanoplatelets Using a Solution Process and Their Supercapacitor Applications. ACS Nano. 2013, 7, 19–26. DOI: 10.1021/nn3034309.
  • Zou, Z.; Xiao, W.; Zhang, Y.; Yu, H.; Zhou, W. Facile Synthesis of Freestanding Cellulose/RGO/Silver/Fe2O3 Hybrid Film for Ultrahigh-Areal-Energy-Density Flexible Solid-State Supercapacitor. Appl. Surf. Sci. 2020, 500, 144244. DOI: 10.1016/j.apsusc.2019.144244.
  • Krishnamoorthy, K.; Pazhamalai, P.; Veerasubramani, G. K.; Kim, S. J. Mechanically Delaminated Few Layered MoS2 Nanosheets Based High Performance Wire Type Solid-State Symmetric Supercapacitors. J. Power Sour. 2016, 321, 112–119. DOI: 10.1016/j.jpowsour.2016.04.116.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.