41
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

In situ observation of micrometer-scaled peristaltic pumping

&
Pages 452-455 | Received 19 Oct 2023, Accepted 05 Dec 2023, Published online: 15 Dec 2023

References

  • Regan, B.; Aloni, S.; Ritchie, R.; Dahmen, U.; Zettl, A. Carbon Nanotubes as Nanoscale Mass Conveyors. Nature 2004, 428, 924–927. DOI: 10.1038/nature02496.
  • Svensson, K.; Olin, H.; Olsson, E. Nanopipettes for Metal Transport. Phys. Rev. Lett. 2004, 93, 145901. DOI: 10.1103/PhysRevLett.93.145901.
  • He, L.-B.; Shangguan, L.; Gao, Y.-T.; Yang, S.; Ran, Y.-T.; Lu, Z.-Y.; Zhu, J.-H.; Wang, B.-J.; Sun, L.-T. Nanometer-Sized te Pistons in Carbon Cylinders as Nano-Motor Prototypes: Implications for Nano-Electromechanical Device Fabrication. ACS Appl. Nano Mater. 2023, 6, 7679–7685. DOI: 10.1021/acsanm.3c00816.
  • Barreiro, A.; Rurali, R.; Hernández, E. R.; Moser, J.; Pichler, T.; Forró, L.; Bachtold, A. Subnanometer Motion of Cargoes Driven by Thermal Gradients along Carbon Nanotubes. Science 2008, 320, 775–778. DOI: 10.1126/science.1155559.
  • Regan, B.; Aloni, S.; Huard, B.; Fennimore, A.; Ritchie, R.; Zettl, A. Nanowicks: Nanotubes as Tracks for Mass Transfer. Presented at the AIP Conference Proceedings, vol. 685, American Institute of Physics, 2003; pp. 612–615.
  • Paulson, S.; Falvo, M.; Snider, N.; Helser, A.; Hudson, T.; Seeger, A.; Taylor, R.; Superfine, R.; Washburn, S. In Situ Resistance Measurements of Strained Carbon Nanotubes. Appl. Phys. Lett. 1999, 75, 2936–2938. DOI: 10.1063/1.125193.
  • Mahar, B.; Laslau, C.; Yip, R.; Sun, Y. Development of Carbon Nanotube-Based Sensors—a Review. IEEE Sensors J. 2007, 7, 266–284. DOI: 10.1109/JSEN.2006.886863.
  • Maiti, A.; Svizhenko, A.; Anantram, M. Electronic Transport through Carbon Nanotubes: Effects of Structural Deformation and Tube Chirality. Phys. Rev. Lett. 2002, 88, 126805. DOI: 10.1103/PhysRevLett.88.126805.
  • Tombler, T. W.; Zhou, C.; Alexseyev, L.; Kong, J.; Dai, H.; Liu, L.; Jayanthi, C.; Tang, M.; Wu, S.-Y. Reversible Electromechanical Characteristics of Carbon Nanotubes Underlocal-Probe Manipulation. Nature 2000, 405, 769–772. DOI: 10.1038/35015519.
  • Maiti, A. Mechanical Deformation in Carbon Nanotubes–Bent Tubes vs Tubes Pushed by Atomically Sharp Tips. Chem. Phys. Lett. 2000, 331, 21–25. DOI: 10.1016/S0009-2614(00)01138-6.
  • Bogár, F.; Mintmire, J.; Bartha, F.; Mező, T.; Van Alsenoy, C. Density-Functional Study of the Mechanical and Electronic Properties of Narrow Carbon Nanotubes under Axial Stress. Phy. Rev. B 2005, 72, 085452.
  • Guo, S.; Zhu, B.; Ou, X.; Pan, Z.; Wang, Y. Deformation of Gold-Filled Single-Walled Carbon Nanotubes under Axial Compression. Carbon 2010, 48, 4129–4135. DOI: 10.1016/j.carbon.2010.07.023.
  • Wu, C.-D.; Fang, T.-H.; Chan, C.-Y. A Molecular Dynamics Simulation of the Mechanical Characteristics of a c60-Filled Carbon Nanotube under Nanoindentation Using Various Carbon Nanotube Tips. Carbon 2011, 49, 2053–2061. DOI: 10.1016/j.carbon.2011.01.034.
  • Wang, J.; Li, H.; Li, Y.; Yu, H.; He, Y.; Song, X. Deformation of Copper-Filled Single-Walled Boron-Nitride Nanotubes under Axial Compression. Physica. E 2011, 44, 286–289. DOI: 10.1016/j.physe.2011.08.024.
  • Cao, Q. Thermophoresis of Nanodroplets in Deformed Carbon Nanotubes Due to Nanoindentation. J. Phys. Chem. C 2019, 123, 29750–29758. DOI: 10.1021/acs.jpcc.9b09197.
  • Shapiro, A. H.; Jaffrin, M. Y.; Weinberg, S. L. Peristaltic Pumping with Long Wavelengths at Low Reynolds Number. J. Fluid Mech. 1969, 37, 799–825. DOI: 10.1017/S0022112069000899.
  • Jaffrin, M.; Shapiro, A. Peristaltic Pumping. Annu. Rev. Fluid Mech. 1971, 3, 13–37. DOI: 10.1146/annurev.fl.03.010171.000305.
  • Weinberg, S. L.; Eckstein, E. C.; Shapiro, A. H. An Experimental Study of Peristaltic Pumping. J. Fluid Mech. 1971, 49, 461. DOI: 10.1017/S0022112071002209.
  • Murray, P. R.; Browne, D. L.; Pastre, J. C.; Butters, C.; Guthrie, D.; Ley, S. V. Continuous Flow-Processing of Organometallic Reagents Using an Advanced Peristaltic Pumping System and the Telescoped Flow Synthesis of (e/z)-Tamoxifen, Org. Org. Process Res. Dev. 2013, 17, 1192–1208. DOI: 10.1021/op4001548.
  • Carpi, F.; Menon, C.; De Rossi, D. Electroactive Elastomeric Actuator for All-Polymer Linear Peristaltic Pumps. IEEE/ASME Trans. Mechatron. 2010, 15, 460–470. DOI: 10.1109/TMECH.2009.2028884.
  • Takagi, D.; Balmforth, N. Peristaltic Pumping of Viscous Fluid in an Elastic Tube. J. Fluid Mech. 2011, 672, 196–218. DOI: 10.1017/S0022112010005914.
  • Hung, T.-K.; Brown, T. D. Solid-Particle Motion in Two-Dimensional Peristaltic Flows. J. Fluid Mech. 1976, 73, 77–96. DOI: 10.1017/S0022112076001262.
  • Srivastava, L.; Srivastava, V. Peristaltic Transport of Blood: Casson Model—II. J. Biomech. 1984, 17, 821–829. DOI: 10.1016/0021-9290(84)90140-4.
  • Zeeshan, A.; Ijaz, N.; Bhatti, M.; Mann, A. Mathematical Study of Peristaltic Propulsion of Solid–Liquid Multiphase Flow with a Biorheological Fluid as the Base Fluid in a Duct. Chin. J. Phys. 2017, 55, 1596–1604. DOI: 10.1016/j.cjph.2017.05.020.
  • Xie, J.; Shih, J.; Lin, Q.; Yang, B.; Tai, Y.-C. Surface Micromachined Electrostatically Actuated Micro Peristaltic Pump. Lab Chip. 2004, 4, 495–501. DOI: 10.1039/b403906h.
  • Yamatsuta, E.; Beh, S. P.; Uesugi, K.; Tsujimura, H.; Morishima, K. A Micro Peristaltic Pump Using an Optically Controllable Bioactuator. Engineering 2019, 5, 580–585. DOI: 10.1016/j.eng.2018.11.033.
  • Skafte-Pedersen, P.; Sabourin, D.; Dufva, M.; Snakenborg, D. Multi-Channel Peristaltic Pump for Microfluidic Applications Featuring Monolithic Pdms Inlay. Lab. Chip. 2009, 9, 3003–3006. DOI: 10.1039/b906156h.
  • Nguyen, N.-T.; Huang, X.; Chuan, T. K. Mems-Micropumps: A Review. J. Fluids Eng. 2002, 124, 384–392. DOI: 10.1115/1.1459075.
  • Kim, D.; Choi, H.; Brendel, T.; Quach, H.; Esparza, M.; Kang, H.; Feng, Y.-T.; Ashcraft, J. N.; Ke, X.; Wang, T.; Douglas, E. S, Wyant College of Optical Sciences, University of Arizona, 1630 E. University Blvd., Tucson, AZ 85721, USA. Advances in Optical Engineering for Future Telescopes. OEA. 2021, 4, 210040–210040. DOI: 10.29026/oea.2021.210040.
  • Dorozhkin, P. S.; Tovstonog, S. V.; Golberg, D.; Zhan, J.; Ishikawa, Y.; Shiozawa, M.; Nakanishi, H.; Nakata, K.; Bando, Y. A Liquid-ga-Filled Carbon Nanotube: A Miniaturized Temperature Sensor and Electrical Switch. Small 2005, 1, 1088–1093. DOI: 10.1002/smll.200500154.
  • Gao, Y.; Bando, Y. Carbon Nanothermometer Containing Gallium. Nature 2002, 415, 599–599. DOI: 10.1038/415599a.
  • Gao, Y.; Bando, Y.; Liu, Z.; Golberg, D.; Nakanishi, H. Temperature Measurement Using a Gallium-Filled Carbon Nanotube Nanothermometer. Appl. Phys. Lett. 2003, 83, 2913–2915. DOI: 10.1063/1.1616201.
  • Liu, Z.; Bando, Y.; Mitome, M.; Zhan, J. Unusual Freezing and Melting of Gallium Encapsulated in Carbon Nanotubes. Phys. Rev. Lett. 2004, 93, 095504. DOI: 10.1103/PhysRevLett.93.095504.
  • Pan, Z. W.; Dai, S.; Beach, D. B.; Evans, N. D.; Lowndes, D. H. Gallium-Mediated Growth of Multiwall Carbon Nanotubes. Appl. Phys. Lett. 2003, 82, 1947–1949. DOI: 10.1063/1.1563727.
  • Kozhuharova, R.; Ritschel, M.; Mönch, I.; Mühl, T.; Leonhardt, A.; Graff, A.; Schneider, C. Selective Growth of Aligned co-Filled Carbon Nanotubes on Silicon Substrates. Fuller. Nanotub. Carbon Nanostruct. 2005, 13, 347–353. DOI: 10.1081/FST-200039348.
  • Okada, M.; Sasaki, D.; Kohno, H. In Situ Scanning Electron Microscopy Observations of Filler Material Transport in Branched Carbon Microtubes by Joule Heating. Microscopy (Oxf) 2020, 69, 291–297. DOI: 10.1093/jmicro/dfaa023.
  • Ichigi, K.; Kohno, H. Filler Material Transport in and through a Carbon Nanotetrahedron/Ribbon Structure. Jpn. J. Appl. Phys. 2020, 59, 108001. DOI: 10.35848/1347-4065/abb40f.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.