57
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Application of aminated chitosan/functionalized carbon nanotube (CNT) nanocomposite in adsorption desulfurization of fuels containing dibenzothiophene (DBT)

&
Pages 483-492 | Received 22 Nov 2023, Accepted 12 Dec 2023, Published online: 27 Dec 2023

References

  • Daraee, M.; Ghasemy, E.; Rashidi, A. Effective Adsorption of Hydrogen Sulfide by Intercalation of TiO2 and N-Doped TiO2 in Graphene Oxide. J. Environ. Chem. Eng. 2020, 8, 103836. DOI: 10.1016/j.jece.2020.103836.
  • Alivand, S.; Shafiei-Alavijeh, M.; Tehrani, N. H. M. H.; Ghasemy, E.; Rashidi, A.; Fakhraie, S. Facile and High-yield Synthesis of Improved MIL-101 (Cr) Metal-organic Framework with Exceptional CO2 and H2S Uptake; The Impact of Excess Ligand-Cluster. 2019.
  • Daraee, M.; Ghasemy, E.; Rashidi, A. Synthesis of Novel and Engineered UiO-66/Graphene Oxide Nanocomposite with Enhanced H2S Adsorption Capacity. J. Environ. Chem. Eng. 2020, 8, 104351. DOI: 10.1016/j.jece.2020.104351.
  • Yousefian, Z.; Ghasemy, E.; Askarieh, M.; Rashidi, A. Theoretical Studies on B, N, P, S, and Si Doped Fullerenes toward H2S Sensing and Adsorption. Physica E 2019, 114, 113626. DOI: 10.1016/j.physe.2019.113626.
  • Ahmed, I.; Jhung, S. H. Adsorptive Desulfurization and Denitrogenation Using Metal-Organic Frameworks. J. Hazard. Mater. 2016, 301, 259–276. DOI: 10.1016/j.jhazmat.2015.08.045.
  • Daraee, M.; Saeedirad, R.; Ghasemy, E.; Rashidi, A. N-CNT/ZIF-8 Nano-Adsorbent for Adsorptive Desulfurization of the Liquid Streams: Experimental and J. Environ. Chem. Eng. 2021, 9, 104806. DOI: 10.1016/j.jece.2020.104806.
  • Fakhraie, S.; Rajabi, H. R.; Rashidi, A.; Orooji, Y.; Ghasemy, E.; Zeraati, A. S.; Rahighi, R.; Mirhashemi, A. In Situ Simultaneous Chemical Activation and Exfoliation of Carbon Quantum Dots for Atmospheric Adsorption of H2S and CO2 at Room Temperature. Appl. Surf. Sci. 2021, 559, 149892. DOI: 10.1016/j.apsusc.2021.149892.
  • Meshkat, S. S.; Ghasemy, E.; Rashidi, A.; Tavakoli, O.; Esrafili, M. Experimental and DFT Insights into Nitrogen and Sulfur co-Doped Carbon Nanotubes for Effective Desulfurization of Liquid Phases: Equilibrium & Kinetic Study. Front. Environ. Sci. Eng. 2021, 15, 1–14. DOI: 10.1007/s11783-021-1397-3.
  • Aida, T.; Yamamoto, D.; Iwata, M.; Sakata, K. Development of Oxidative Desulfurization Process for Diesel Fuel. Rev. Heteroatom Chem. 2000, 22, 241–255.
  • Kirimura, K.; Furuya, T.; Nishii, Y.; Ishii, Y.; Kino, K.; Usami, S. Biodesulfurization of Dibenzothiophene and Its Derivatives through the Selective Cleavage of Carbon-Sulfur Bonds by a Moderately Thermophilic Bacterim Bacillus subtilis WU-S2B. J. Biosci. Bioeng. 2001, 91, 262–266. DOI: 10.1016/S1389-1723(01)80131-6.
  • Zhang, W.; Zhang, H.; Xiao, J.; Zhao, Z.; Yu, M.; Li, Z. Carbon Nanotube Catalysts for Oxidative Desulfurization of a Model Diesel Fuel Using Molecular Oxygen. Green Chem. 2014, 16, 211–220. DOI: 10.1039/C3GC41106K.
  • Cortes-Jácome, M. A.; Morales, M.; Angeles Chavez, C.; Ramírez-Verduzco, L. F.; López-Salinas, E.; Toledo-Antonio, J. A. WO x/TiO2 Catalysts via Titania Nanotubes for the Oxidation of Dibenzothiophene. Chem. Mater. 2007, 19, 6605–6614. DOI: 10.1021/cm702010k.
  • Tao, H.; Nakazato, T.; Sato, S. Energy-Efficient Ultra-Deep Desulfurization of Kerosene Based on Selective Photooxidation and Adsorption. Fuel 2009, 88, 1961–1969. DOI: 10.1016/j.fuel.2009.03.020.
  • Matsuzawa, S.; Tanaka, J.; Sato, S.; Ibusuki, T. Photocatalytic Oxidation of Dibenzothiophenes in Acetonitrile Using TiO2: Effect of Hydrogen Peroxide and Ultrasound Irradiation. J. Photochem. Photobiol, A 2002, 149, 183–189. DOI: 10.1016/S1010-6030(02)00004-7.
  • Shiraishi, Y.; Hara, H.; Hirai, T.; Komasawa, I. A Deep Desulfurization Process for Light Oil by Photosensitized Oxidation Using a Triplet Photosensitizer and Hydrogen Peroxide in an Oil/Water Two-Phase Liquid − Liquid Extraction System. Ind. Eng. Chem. Res. 1999, 38, 1589–1595. DOI: 10.1021/ie980651s.
  • Gislason, J. Phillips Sulfur-Removal Process Nears Commercialization. Oil Gas J. 2001, 99, 72–72.
  • Hoguet, J.-C.; Karagiannakis, G. P.; Valla, J. A.; Agrafiotis, C. C.; Konstandopoulos, A. G. Gas and Liquid Phase Fuels Desulphurization for Hydrogen Production via Reforming Processes. Int. J. Hydrogen Energy 2009, 34, 4953–4962. DOI: 10.1016/j.ijhydene.2008.11.043.
  • Kim, J. H.; Ma, X.; Zhou, A.; Song, C. Ultra-Deep Desulfurization and Denitrogenation of Diesel Fuel by Selective Adsorption over Three Different Adsorbents: A Study on Adsorptive Selectivity and Mechanism. Catal. Today 2006, 111, 74–83. DOI: 10.1016/j.cattod.2005.10.017.
  • Hernández-Maldonado, A. J.; Qi, G.; Yang, R. T. Desulfurization of Commercial Fuels by π-Complexation: Monolayer CuCl/γ-Al2O3. Appl. Catal. B 2005, 61, 212–218. DOI: 10.1016/j.apcatb.2005.05.003.
  • Srivastav, A.; Srivastava, V. C. Adsorptive Desulfurization by Activated Alumina. J. Hazard. Mater. 2009, 170, 1133–1140. DOI: 10.1016/j.jhazmat.2009.05.088.
  • Alhamed, Y. A.; Bamufleh, H. S. Sulfur Removal from Model Diesel Fuel Using Granular Activated Carbon from Dates’ Stones Activated by ZnCl2. Fuel 2009, 88, 87–94. DOI: 10.1016/j.fuel.2008.07.019.
  • Mohebbi, S.; Nezhad, M. N.; Zarrintaj, P.; Jafari, S. H.; Gholizadeh, S. S.; Saeb, M. R.; Mozafari, M. Chitosan in Biomedical Engineering: A Critical Review. Curr. Stem Cell Res. Ther. 2019, 14, 93–116. DOI: 10.2174/1574888X13666180912142028.
  • Seidi, F.; Khodadadi Yazdi, M.; Jouyandeh, M.; Dominic, M.; Naeim, H.; Nezhad, M. N.; Bagheri, B.; Habibzadeh, S.; Zarrintaj, P.; Saeb, M. R.; Mozafari, M. Chitosan-Based Blends for Biomedical Applications. Int. J. Biol. Macromol. 2021, 183, 1818–1850. DOI: 10.1016/j.ijbiomac.2021.05.003.
  • Nasirinezhad, M.; Reza Ghaffarian, S.; Tohidian, M. Nanocomposite Membranes Based on Imidazole-Functionalized Chitin Nanowhiskers for Direct Methanol Fuel Cell Applications. Journal of Macromolecular Science, Part B 2021, 60, 663–685. DOI: 10.1080/00222348.2021.1892977.
  • Chang, Y.; Zhang, L.; Ying, H.; Li, Z.; Lv, H.; Ouyang, P. Desulfurization of Gasoline Using Molecularly Imprinted Chitosan as Selective Adsorbents. Appl. Biochem. Biotechnol. 2010, 160, 593–603. DOI: 10.1007/s12010-008-8441-7.
  • Farzin Nejad, N.; Shams, E.; Amini, M. K.; Choolaei, M. Efficient Desulfurization of Fuel with Functionalized Mesoporous Carbon CMK-3-O and Comparison Its Performance with Mesoporous Carbon CMK-3. Fullerenes Nanotubes Carbon Nanostruct. 2016, 24, 786–795. DOI: 10.1080/1536383X.2016.1242484.
  • Hasan, R. A.; Fadhil, A. B. Conversion of Atmospheric Residue into Upgraded Fuel and Carbon Adsorbent for the Adsorptive Desulfurization Process. Fullerenes Nanotubes Carbon Nanostruct. 2023, 31, 423–434. DOI: 10.1080/1536383X.2023.2169676.
  • Ali Rezvani, M.; Aghmasheh, M. Synthesis of a Nanocomposite Based on Chitosan and Modified Heteropolyanion as a Nanocatalyst for Oxidative Desulfurization of Real and Thiophenic Model Fuels. J. Coord. Chem. 2020, 73, 1407–1424. DOI: 10.1080/00958972.2020.1789916.
  • Aminirad, P.; Alavi, S. A.; Nasr, M. R. J. Gas Condensate Desulfurization By Oxidation Method in the Presence of Nanoclay And Chitosan Adsorbent: An Experimental Study. 2019.
  • Lu, M.-C.; Biel, L. C. C.; Wan, M.-W.; de Leon, R.; Arco, S.; Futalan, C. M. Adsorption of Dibenzothiophene Sulfone from Fuel Using Chitosan-Coated Bentonite (CCB) as Biosorbent. Desalin. Water Treat. 2016, 57, 5108–5118. DOI: 10.1080/19443994.2014.996773.
  • Lu, M. C.; Agripa, M. L.; Wan, M. W.; Dalida, M. L. P. Removal of Oxidized Sulfur Compounds Using Different Types of Activated Carbon, Aluminum Oxide, and Chitosan-Coated Bentonite. Desalin. Water Treat. 2014, 52, 873–879. DOI: 10.1080/19443994.2013.826330.
  • Wang, L.; Li, S.; Cai, H.; Xu, Y.; Wu, X.; Chen, Y. Ultra-Deep Desulfurization of Fuel with Metal Complex of Chitosan Schiff Base Assisted by Ultraviolet. Fuel 2012, 94, 165–169. DOI: 10.1016/j.fuel.2011.10.023.
  • Wang, L.; Peng, Q.; Li, S.; Du, L.; Cai, H. Simultaneous Removal of Sulphide and Nickel by the Compound of Chitosan Schiff Base from Crude Oil under Microwave Irradiation. J. Ind. Eng. Chem. 2013, 19, 655–658. DOI: 10.1016/j.jiec.2012.10.002.
  • Tamer, T.; Aacute, K.; Mohyeldin, M.; Soltes, L. Free Radical Scavenger Activity of Chitosan and Its Aminated Derivative. J. App. Pharm. Sci. 2016, 6, 195–201. DOI: 10.7324/JAPS.2016.60428.
  • Mhemed, H. A.; Marin Gallego, M.; Largeau, J.-F.; Kordoghli, S.; Zagrouba, F.; Tazerout, M. Gas Adsorptive Desulfurization of Thiophene by Spent Coffee Grounds-Derived Carbon Optimized by Response Surface Methodology: Isotherms and Kinetics Evaluation. J. Environ. Chem. Eng. 2020, 8, 104036. DOI: 10.1016/j.jece.2020.104036.
  • Huo, Q.; Li, J.; Qi, X.; Liu, G.; Zhang, X.; Zhang, B.; Ning, Y.; Fu, Y.; Liu, J.; Liu, S. Cu, Zn-Embedded MOF-Derived Bimetallic Porous Carbon for Adsorption Desulfurization. Chem. Eng. J. 2019, 378, 122106. DOI: 10.1016/j.cej.2019.122106.
  • Langmuir, I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. DOI: 10.1021/ja02242a004.
  • Deng, C.; Zhu, M. New Type Nitrogen-Doped Carbon Material Applied to Deep Adsorption Desulfurization. Energy Fuels 2020, 34, 9320–9327. DOI: 10.1021/acs.energyfuels.0c00854.
  • Di, T.; Xia, Y.; Pei, B.; Zhu, T.; Zhao, T.; Li, T.; Li, L. Preparation of Porous Carbon Materials Derived from Hyper-Cross-Linked Asphalt/Coal Tar and Their High Desulfurization Performance. Langmuir 2020, 36, 11117–11124. DOI: 10.1021/acs.langmuir.0c02115.
  • Chen, K.; Li, W.; Biney, B. W.; Li, Z.; Shen, J.; Wang, Z. Evaluation of Adsorptive Desulfurization Performance and Economic Applicability Comparison of Activated Carbons Prepared from Various Carbon Sources. RSC Adv. 2020, 10, 40329–40340. DOI: 10.1039/d0ra07862j.
  • Lagergren, S. K. About the Theory of so-Called Adsorption of Soluble Substances. Sven. Vetenskapsakad. Handingarl 1898, 24, 1–39.
  • Saleh, T. A.; Sulaiman, K. O.; Al-Hammadi, S. A.; Dafalla, H.; Danmaliki, G. I. Adsorptive Desulfurization of Thiophene, Benzothiophene and Dibenzothiophene over Activated Carbon Manganese Oxide Nanocomposite: With Column System Evaluation. J. Cleaner Prod. 2017, 154, 401–412. DOI: 10.1016/j.jclepro.2017.03.169.
  • Khaled, M. Adsorption Performance of Multiwall Carbon Nanotubes and Graphene Oxide for Removal of Thiophene and Dibenzothiophene from Model Diesel Fuel. Res. Chem. Intermed. 2015, 41, 9817–9833. DOI: 10.1007/s11164-015-1986-5.
  • Danial, A. S.; Saleh, M. M.; Salih, S. A.; Awad, M. I. On the Synthesis of Nickel Oxide Nanoparticles by Sol–Gel Technique and Its Electrocatalytic Oxidation of Glucose. J. Power Sources 2015, 293, 101–108. DOI: 10.1016/j.jpowsour.2015.05.024.
  • Yuh-Shan, H. Citation Review of Lagergren Kinetic Rate Equation on Adsorption Reactions. Scientometrics 2004, 59, 171–177. DOI: 10.1023/B:SCIE.0000013305.99473.cf.
  • Xu, G.; Xu, G.; Shi, T. Grafting of Chitosan Schiff Base on Graphene Oxide and Its Characterization. Fullerenes Nanotubes Carbon Nanostruct. 2016, 24, 749–756. DOI: 10.1080/1536383X.2016.1226285.
  • Sinolits, A. V.; Chernysheva, M. G.; Matveeva, O. D.; Popov, A. G.; Badun, G. A. Chitosan Adsorption on Nanodiamonds: Stability and Mechanism. Fullerenes Nanotubes Carbon Nanostruct. 2020, 28, 299–303. DOI: 10.1080/1536383X.2019.1708729.
  • Shao, Y.; Zhang, S.; Engelhard, M. H.; Li, G.; Shao, G.; Wang, Y.; Liu, J.; Aksay, I. A.; Lin, Y. Nitrogen-Doped Graphene and Its Electrochemical Applications. J. Mater. Chem. 2010, 20, 7491–7496. DOI: 10.1039/c0jm00782j.
  • Li, X.; Geng, D.; Zhang, Y.; Meng, X.; Li, R.; Sun, X. Superior Cycle Stability of Nitrogen-Doped Graphene Nanosheets as Anodes for Lithium Ion Batteries. Electrochem. Commun. 2011, 13, 822–825. DOI: 10.1016/j.elecom.2011.05.012.
  • Lin, Z.; Waller, G.; Liu, Y.; Liu, M.; Wong, C. Facile Synthesis of Nitrogen‐Doped Graphene via Pyrolysis of Graphene Oxide and Urea, and Its Electrocatalytic Activity toward the Oxygen‐Reduction Reaction. Adv. Energy Mater. 2012, 2, 884–888. DOI: 10.1002/aenm.201200038.
  • López, N.; Vargas-Fuentes, C. Promoters in the Hydrogenation of Alkynes in Mixtures: Insights from Density Functional Theory. Chem. Commun. (Camb.) 2012, 48, 1379–1391. DOI: 10.1039/c1cc14922a.
  • Hosseini-Dastgerdi, Z.; Meshkat, S. S. An Experimental and Modeling Study of Asphaltene Adsorption by Carbon Nanotubes from Model Oil Solution. J. Petrol. Sci. Eng. 2019, 174, 1053–1061. DOI: 10.1016/j.petrol.2018.12.024.
  • Muzic, M.; Sertic-Bionda, K.; Gomzi, Z.; Podolski, S.; Telen, S. Study of Diesel Fuel Desulfurization by Adsorption. Chem. Eng. Res. Des. 2010, 88, 487–495. DOI: 10.1016/j.cherd.2009.08.016.
  • Meshkat, S. S.; Tavakoli, O.; Rashidi, A.; Esrafili, M. D. Adsorptive Mercaptan Removal of Liquid Phase Using Nanoporous Graphene: Equilibrium, Kinetic Study and DFT Calculations. Ecotoxicol. Environ. Saf. 2018, 165, 533–539. DOI: 10.1016/j.ecoenv.2018.08.110.
  • Subhan, F.; Liu, B. S.; Zhang, Q. L.; Wang, W. S. Production of Ultra-Low-Sulfur Gasoline: An Equilibrium and Kinetic Analysis on Adsorption of Sulfur Compounds over Ni/MMS Sorbents. J. Hazard. Mater. 2012, 239-240, 370–380. DOI: 10.1016/j.jhazmat.2012.09.012.
  • Coughlin, R. W.; Ezra, F. S. Role of Surface Acidity in the Adsorption of Organic Pollutants on the Surface of Carbon. Environ. Sci. Technol. 1968, 2, 291–297. DOI: 10.1021/es60016a002.
  • Giles, C. H.; Smith, D.; Huitson, A. A General Treatment and Classification of the Solute Adsorption Isotherm. I. Theoretical. J. Colloid Interface Sci. 1974, 47, 755–765. DOI: 10.1016/0021-9797(74)90252-5.
  • Ania, C. O.; Parra, J. B.; Arenillas, A.; Rubiera, F.; Bandosz, T. J.; Pis, J. J. On the Mechanism of Reactive Adsorption of Dibenzothiophene on Organic Waste Derived Carbons. Appl. Surf. Sci. 2007, 253, 5899–5903. DOI: 10.1016/j.apsusc.2006.12.065.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.