692
Views
67
CrossRef citations to date
0
Altmetric
PERSPECTIVES-YRJÖ JAHNSSON FOUNDATION SYMPOSIUM

Current Perspectives on Role of Chromatin Modifications and Deacetylases in Lung Inflammation in COPD

, &
Pages 291-297 | Published online: 11 Sep 2009

REFERENCES

  • Rahman I. Oxidative stress in pathogenesis of chronic obstructive pulmonary disease: cellular and molecular mechanisms. Cell Biochem Biophys 2005; 43: 167–188
  • Rahman I, Adcock I M. Oxidative stress and redox regulation of lung inflammation in COPD. Eur Respir J 2006; 28: 219–242
  • Gosden R G, Feinberg A P. Genetics and epigenetics—nature's pen-and-pencil set. N Engl J Med 2007; 356: 731–733
  • Li B, Carey M, Workman J L. The role of chromatin duringtranscription. Cell 2007; 128: 707–719
  • Rahman I. Oxidative stress, chromatin remodeling and gene transcription in inflammation and chronic lung diseases. J Biochem Mol Biol 2003; 36: 95–109
  • Marwick J A, Kirkham P A, Stevenson C S, Danahay H, Giddings J, Butler K, Donaldson K, Macnee W, Rahman I. Cigarette smoke alters chromatin remodeling and induces proinflammatory genes in rat lungs. Am J Respir Cell Mol Biol 2004; 31: 633–642
  • Yang S R, Valvo S, Yao H, Kode A, Rajendrasozhan S, Edirisinghe I, Caito S, Adenuga D, Henry R, Fromm G, Maggirwar S, Li J D, Bulger M, Rahman I. IKK alpha causes chromatin modification on pro-inflammatory genes by cigarette smoke in mouse lung. Am J Respir Cell Mol Biol 2008; 38: 689–698
  • Szulakowski P, Crowther A J, Jimenez L A, Donaldson K, Mayer R, Leonard T B, MacNee W, Drost E M. The effect of smoking on the transcriptional regulation of lung inflammation in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2006; 174: 41–50
  • Ito K, Ito M, Elliott W M, Cosio B, Caramori G, Kon O M, Barczyk A, Hayashi S, Adcock I M, Hogg J C, Barnes P J. Decreased histone deacetylase activity in chronic obstructive pulmonary disease. N Engl J Med 2005; 352: 1967–1976
  • Rajendrasozhan S, Yang S R, Kinnula V L, Rahman I. SIRT1, an antiinflammatory and antiaging protein, is decreased in lungs of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2008; 177: 861–870
  • Lo W S, Trievel R C, Rojas J R, Duggan L, Hsu J Y, Allis C D, Marmorstein R, Berger S L. Phosphorylation of serine 10 in histone H3 is functionally linked in vitro and in vivo to Gcn5-mediated acetylation at lysine 14. Mol Cell 2000; 5: 917–926
  • Clayton A L, Rose S, Barratt M J, Mahadevan L C. Phosphoacetylation of histone H3 on c-fos- and c-jun-associated nucleosomes upon gene activation. EMBO J 2000; 19: 3714–3726
  • Thomson S, Mahadevan L C, Clayton A L. MAP kinase-mediated signalling to nucleosomes and immediate-early gene induction. Semin Cell Dev Biol 1999; 10: 205–214
  • Gloire G, Horion J, El Mjiyad N, Bex F, Chariot A, Dejardin E, Piette J. Promoter-dependent effect of IKKalpha on NF-kappaB/p65 DNA binding. J Biol Chem 2007; 282: 21308–21318
  • Yamamoto Y, Verma U N, Prajapati S, Kwak Y T, Gaynor R B. Histone H3 phosphorylation by IKK-alpha is critical for cytokine-induced gene expression. Nature 2003; 423: 655–659
  • Di Fiore P P, Polo S, Hofmann K. When ubiquitin meets ubiquitin receptors: a signalling connection. Nat Rev Mol Cell Biol 2003; 4: 491–497
  • Vissers J H, Nicassio F, van Lohuizen M, Di Fiore P P, Citterio E. The many faces of ubiquitinated histone H2A: insights from the DUBs. Cell Div 2008; 3: 8
  • Spange S, Wagner T, Heinzel T, Kramer O H. Acetylation of non-histone proteins modulates cellular signalling at multiple levels. Int J Biochem Cell Biol 2009; 41: 185–198
  • Rajendrasozhan S, Yang S R, Edirisinghe I, Yao H, Adenuga D, Rahman I. Deacetylases and NF-kappaB in redox regulation of cigarette smoke-induced lung inflammation: epigenetics in pathogenesis of COPD. Antioxid Redox Signal 2008; 10: 799–811
  • de Ruijter A J, van Gennip A H, Caron H N, Kemp S, van Kuilenburg A B. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 2003; 370: 737–749
  • Ito K, Lim S, Caramori G, Chung K F, Barnes P J, Adcock I M. Cigarette smoking reduces histone deacetylase 2 expression, enhances cytokine expression, and inhibits glucocorticoid actions in alveolar macrophages. FASEB J 2001; 15: 1110–1112
  • Yang S R, Chida A S, Bauter M R, Shafiq N, Seweryniak K, Maggirwar S B, Kilty I, Rahman I. Cigarette smoke induces proinflammatory cytokine release by activation of NF-kappaB and posttranslational modifications of histone deacetylase in macrophages. Am J Physiol Lung Cell Mol Physiol 2006; 291: L46–57
  • Yang S R, Wright J, Bauter M, Seweryniak K, Kode A, Rahman I. Sirtuin regulates cigarette smoke-induced proinflammatory mediator release via RelA/p65 NF-kappaB in macrophages in vitro and in rat lungs in vivo: implications for chronic inflammation and aging. Am J Physiol Lung Cell Mol Physiol 2007; 292: L567–576
  • Milne J C, Denu J M. The Sirtuin family: therapeutic targets to treat diseases of aging. Curr Opin Chem Biol 2008; 12: 11–17
  • Chen L, Fischle W, Verdin E, Greene W C. Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science 2001; 293: 1653–1657
  • Vermeulen L, De Wilde G, Van Damme P, Vanden Berghe W, Haegeman G. Transcriptional activation of the NF-kappaB p65 subunit by mitogen- and stress-activated protein kinase-1 (MSK1). Embo J 2003; 22: 1313–1324
  • Kamata H, Manabe T, Oka S, Kamata K, Hirata H. Hydrogen peroxide activates IkappaB kinases through phosphorylation of serine residues in the activation loops. FEBS Lett 2002; 519: 231–237
  • Zhang J, Johnston G, Stebler B, Keller E T. Hydrogen peroxide activates NFkappaB and the interleukin-6 promoter through NFkappaB-inducing kinase. Antioxid Redox Signal 2001; 3: 493–504
  • Kefaloyianni E, Gaitanaki C, Beis I. ERK1/2 and p38-MAPK signalling pathways, through MSK1, are involved in NF-kappaB transactivation during oxidative stress in skeletal myoblasts. Cell Signal 2006; 18: 2238–2251
  • Barnes P J. Role of HDAC2 in the pathophysiology of COPD. Annu Rev Physiol 2008, (In press)
  • Adenuga D, Yao H, March T H, Seagrave J, Rahman I. Histone deacetylase 2 is phosphorylated, ubiquitinated and degraded by cigarette smoke. Am J Respir Cell Mol Biol 2008; 40: 464–473
  • Ito K, Hanazawa T, Tomita K, Barnes P J, Adcock I M. Oxidative stress reduces histone deacetylase 2 activity and enhances IL-8 gene expression: role of tyrosine nitration. Biochem Biophys Res Commun 2004; 315: 240–245
  • Cosio B G, Tsaprouni L, Ito K, Jazrawi E, Adcock I M, Barnes P J. Theophylline restores histone deacetylase activity and steroid responses in COPD macrophages. J Exp Med 2004; 200: 689–695
  • Nott A, Watson P M, Robinson J D, Crepaldi L, Riccio A. S-Nitrosylation of histone deacetylase 2 induces chromatin remodelling in neurons. Nature 2008; 455: 411–415
  • Meja K K, Rajendrasozhan S, Adenuga D, Biswas S K, Sundar I K, Spooner G, Marwick J A, Chakravarty P, Fletcher D, Whittaker P, Megson I L, Kirkham P A, Rahman I. Curcumin restores corticosteroid function in monocytes exposed to oxidants by maintaining HDAC2. Am J Respir Cell Mol Biol 2008; 39: 312–323
  • Tsai S C, Seto E. Regulation of histone deacetylase 2 by protein kinase CK2. J Biol Chem 2002; 277: 31826–31833
  • Galasinski S C, Resing K A, Goodrich J A, Ahn N G. Phosphatase inhibition leads to histone deacetylases 1 and 2 phosphorylation and disruption of corepressor interactions. J Biol Chem 2002; 277: 19618–19626
  • Marwick J A, Stevenson C S, Barnes P J, Ito K, Adcock I M, Kirkham P A. Cigarette smoke reduces steroid sensitivity by reducing glucocorticoid receptor (GR) and GR co-repressor expression. Am J Respir Crit Care Med 2008; 177: A333
  • Ito K, Yamamura S, Essilfie-Quaye S, Cosio B, Ito M, Barnes P J, Adcock I M. Histone deacetylase 2-mediated deacetylation of the glucocorticoid receptor enables NF-kappaB suppression. J Exp Med 2006; 203: 7–13
  • Liu C, Russell R M, Wang X D. Low dose beta-carotene supplementation of ferrets attenuates smoke-induced lung phosphorylation of JNK, p38 MAPK, and p53 proteins. J Nutr 2004; 134: 2705–2710
  • Yeung F, Hoberg J E, Ramsey C S, Keller M D, Jones D R, Frye R A, Mayo M W. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 2004; 23: 2369–2380
  • Chen J, Zhou Y, Mueller-Steiner S, Chen L F, Kwon H, Yi S, Mucke L, Gan L. SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling. J Biol Chem 2005; 280: 40364–40374
  • Chen L F, Mu Y, Greene W C. Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-kappaB. EMBO J 2002; 21: 6539–6548
  • Milne J C, Lambert P D, Schenk S, Carney D P, Smith J J, Gagne D J, Jin L, Boss O, Perni R B, Vu C B, Bemis J E, Xie R, Disch J S, Ng P Y, Nunes J J, Lynch A V, Yang H, Galonek H, Israelian K, Choy W, Iffland A, Lavu S, Medvedik O, Sinclair D A, Olefsky J M, Jirousek M R, Elliott P J, Westphal C H. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 2007; 450: 712–716
  • Rajendrasozhan S, Yang S R, Caito S, Rahman I. Nucleocytoplasmic shuttling and post-translational modifications of sirtuin in response to cigarette smoke lead to increased acetylation of NF-kappaB and FOXO3. Am J Respir Crit Care Med 2008; 177: A266
  • Caito S, Cook S, Yang S R, Rajendrasozhan S, Rahman I. Redox regulation and post-translational modification of sirtuin in response to cigarette smoke in lung epithelial cells. Am J Respir Crit Care Med 2008; 177: A348
  • Caito S, Cook S, Yang S R, Rajendrasozhan S, Rahman I. Sirtuin 1, an oxidant sensitive deacetylase, is posttranslationally modified and degraded by proteasome in reponse to cigarette smoke in lung epithelial cells. FASEB J 2008; 22: 747–741
  • Sasaki T, Maier B, Koclega K D, Chruszcz M, Gluba W, Stukenberg P T, Minor W, Scrable H. Phosphorylation regulates SIRT1 function. PLoS ONE 2008; 3: e4020
  • Yao H, Edirisinghe I, Rajendrasozhan S, Yang S R, Caito S, Adenuga D, Rahman I. Cigarette smoke-mediated inflammatory and oxidative responses are strain-dependent in mice. Am J Physiol Lung Cell Mol Physiol 2008; 294: L1174–1186
  • Yao H, Yang S R, Kode A, Rajendrasozhan S, Caito S, Adenuga D, Henry R, Edirisinghe I, Rahman I. Redox regulation of lung inflammation: role of NADPH oxidase and NF-kappaB signalling. Biochem Soc Trans 2007; 35: 1151–1155
  • Ito K, Barnes P J, Adcock I M. Glucocorticoid receptor recruitment of histone deacetylase 2 inhibits interleukin-1beta-induced histone H4 acetylation on lysines 8 and 12. Mol Cell Biol 2000; 20: 6891–6903
  • Adenuga D, March T H, Seagrave J, Rahman I. Cigarette smoke-induced loss of nuclear HDAC2 is associated with chronic inflammation and emphysema in A/J mice. Am J Respir Crit Care Med 2008; 177: A866
  • Marwick J A, Wallis G, Meja K, Kuster B, Bouwmeester T, Chakravarty P, Fletcher D, Whittaker P A, Barnes P J, Ito K, Adcock I M, Kirkham P A. Oxidative stress modulates theophylline effects on steroid responsiveness. Biochem Biophys Res Commun 2008; 377: 797–802
  • Vaziri H, Dessain S K, Ng Eaton E, Imai S I, Frye R A, Pandita T K, Guarente L, Weinberg R A. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 2001; 107: 149–159
  • Kawahara T LA, Michishita E, Adler A S, Damian M, Berber E, Lin M, McCord R A, Ongaigui K CL, Boxer L D, Chang H Y, Chua K F. SIRT6 Links histone H3 Lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell 2009; 136: 62–74
  • McBurney M W, Yang X, Jardine K, Hixon M, Boekelheide K, Webb J R, Lansdorp P M, Lemieux M. The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis. Mol Cell Biol 2003; 23: 38–54

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.