584
Views
14
CrossRef citations to date
0
Altmetric
PERSPECTIVES-YRJÖ JAHNSSON FOUNDATION SYMPOSIUM

From Proteomics to Prescription—The Search for COPD Biomarkers

, &
Pages 298-303 | Published online: 11 Sep 2009

REFERENCES

  • Franciosi L G, Page C P, Celli B R, Cazzola M, Walker M J, Danhof M, Rabe K F, la Pasqua O E. Markers of disease severity in chronic obstructive pulmonary disease. Pulm Pharmacol Ther 2006; 19: 189–199
  • Hurst J R, Perera W R, Wilkinson T M, Donaldson G C, Wedzicha J A. Exacerbation of chronic obstructive pulmonary disease: pan-airway and systemic inflammatory indices. Proc Amer Thorac Soc 2006; 3: 481–482
  • Wielders P L, Dekhuijzen P N. Disease monitoring in chronic obstructive pulmonary disease: is there a role for biomarkers?. Eur Respir J 1997; 10: 2443–2445
  • Aldonyte R, Eriksson S, Piitulainen E, Wallmark A, Janciauskiene S. Analysis of systemic biomarkers in COPD patients. COPD 2004; 1: 155–164
  • Casado B, Iadarola P, Luisetti M, Kussmann M. Proteomics-based diagnosis of chronic obstructive pulmonary disease: the hunt for new markers. Expert Rev Proteom 2008; 5: 693–704
  • Barnes P J, Stockley R A. COPD: current therapeutic interventions and future approaches. Eur Respir J 2005; 25: 1084–1106
  • Pinto-Plata V, Toso J, Lee K, Bilello J, Mullerova H, De S M, Vessey R, Celli B. Use of proteomic patterns of serum biomarkers in patients with chronic obstructive pulmonary disease: correlation with clinical parameters. Proc Amer Thorac Soc 2006; 3: 465–466
  • Merkel D, Rist W, Seither P, Weith A, Lenter M C. Proteomic study of human bronchoalveolar lavage fluids from smokers with chronic obstructive pulmonary disease by combining surface-enhanced laser desorption/ionization-mass spectrometry profiling with mass spectrometric protein identification. Proteomics 2005; 5: 2972–2980
  • Tzortzaki E G, Lambiri I, Vlachaki E, Siafakas N M. Biomarkers in COPD. Curr Med Chem 2007; 14: 1037–1048
  • Bowler R P, Ellison M C, Reisdorph N. Proteomics in pulmonary medicine. Chest 2006; 130: 567–574
  • Ashitani J, Mukae H, Arimura Y, Matsukura S. Elevated plasma procoagulant and fibrinolytic markers in patients with chronic obstructive pulmonary disease. Intern Med 2002; 41: 181–185
  • Sunderland T, Gur R E, Arnold S E. The use of biomarkers in the elderly: current and future challenges. Biol Psych 2005; 58: 272–276
  • Lakhan S E. Schizophrenia proteomics: biomarkers on the path to laboratory medicine?. Diagn Pathol 2006; 1: 11
  • Biomarkers Definitions Working G Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 2001; 69: 89–95
  • Pascal L E, True L D, Campbell D S, Deutsch E W, Risk M, Coleman I M, Eichner L J, Nelson P S, Liu A Y. Correlation of mRNA and protein levels: cell type-specific gene expression of cluster designation antigens in the prostate. BMC Genom 2008; 9: 246
  • Sethi S, Murphy T F. Bacterial infection in chronic obstructive pulmonary disease in 2000: a state-of-the-art review. Clin Microbiol Rev 2001; 14: 336–363
  • Nishimura K, Izumi T, Tsukino M, Oga T. Dyspnea is a better predictor of 5-year survival than airway obstruction in patients with COPD. Chest 2002; 121: 1434–1440
  • Murray C J, Lopez A D. Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study. Lancet 1997; 349: 1498–1504
  • Kharitonov S A, Barnes P J. Biomarkers of some pulmonary diseases in exhaled breath. Biomarkers 2002; 7: 1–32
  • Jeffery P K, Laitinen A, Venge P. Biopsy markers of airway inflammation and remodelling. Respir Med 2000; 94(Suppl F)S9–15
  • Jones P W, Agusti A G. Outcomes and markers in the assessment of chronic obstructive pulmonary disease. Eur Respir J 2006; 27: 822–832
  • Cazzola M, MacNee W, Martinez F J, Rabe K F, Franciosi L G, Barnes P J, Brusasco V, Burge P S, Calverley P M, Celli B R, et al. Outcomes for COPD pharmacological trials: from lung function to biomarkers. Eur Respir J 2008; 31: 416–469
  • Broekhuizen R, Wouters E F, Creutzberg E C, Schols A M. Raised CRP levels mark metabolic and functional impairment in advanced COPD. Thorax 2006; 61: 17–22
  • Man S F, Xing L, Connett J E, Anthonisen N R, Wise R A, Tashkin D P, Zhang X, Vessey R, Walker T G, Celli B R, et al. Circulating fibronectin to C-reactive protein ratio and mortality: a biomarker in COPD?. Eur Respir J 2008; 32: 1451–1457
  • Fogarty A W, Jones S, Britton J R, Lewis S A, McKeever T M. Systemic inflammation and decline in lung function in a general population: a prospective study. Thorax 2007; 62: 515–520
  • Donaldson G C, Seemungal T A, Patel I S, Bhowmik A, Wilkinson T M, Hurst J R, Maccallum P K, Wedzicha J A. Airway and systemic inflammation and decline in lung function in patients with COPD. Chest 2005; 128: 1995–2004
  • Roth M. Pathogenesis of COPD. Part III. Inflammation in COPD. Int J Tuberc Lung Dis 2008; 12: 375–380
  • Kranenburg A R, Willems-Widyastuti A, Moori W J, Sterk P J, Alagappan V K, de Boer W I, Sharma H S. Enhanced bronchial expression of extracellular matrix proteins in chronic obstructive pulmonary disease. Am J Clin Pathol 2006; 126: 725–735
  • Hogg J C, Chu F, Utokaparch S, Woods R, Elliott W M, Buzatu L, Cherniack R M, Rogers R M, Sciurba F C, Coxson H O, et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med 2004; 350: 2645–2653
  • Higashimoto Y, Yamagata Y, Iwata T, Okada M, Ishiguchi T, Sato H, Masuda M, Itoh H. Increased serum concentrations of tissue inhibitor of metalloproteinase-1 in COPD patients. Eur Respir J 2005; 25: 885–890
  • Szoltysik E, Kucharz E J. Serum markers of collagen metabolism in patients with diseases of the respiratory system. Rom J Intern Med 1993; 31: 119–122
  • Celedon J C, Lange C, Raby B A, Litonjua A A, Palmer L J, Demeo D L, Reilly J J, Kwiatkowski D J, Chapman H A, Laird N, et al. The transforming growth factor-beta1 (TGFB1) gene is associated with chronic obstructive pulmonary disease (COPD). Hum Mol Genet 2004; 13: 1649–1656
  • Ito M, Hanaoka M, Droma Y, Hatayama O, Sato E, Katsuyama Y, Fujimoto K, Ota M. The association of transforming growth factor beta 1 gene polymorphisms with the emphysema phenotype of COPD in Japanese. Intern Med 2008; 47: 1387–1394
  • Sin D D, Man S F. Biomarkers in COPD: are we there yet?. Chest 2008; 133: 1296–1298
  • Erin E M, Jenkins G R, Kon O M, Zacharasiewicz A S, Nicholson G C, Neighbour H, Tennant R C, Tan A J, Leaker B R, Bush A, et al. Optimized dialysis and protease inhibition of sputum dithiothreitol supernatants. Am J Respir Crit Care Med 2008; 177: 132–141
  • Noel-Georis I, Bernard A, Falmagne P, Wattiez R. Database of bronchoalveolar lavage fluid proteins. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 771: 221–236
  • Plymoth A, Yang Z, Lofdahl C G, Ekberg-Jansson A, Dahlback M, Fehniger T E, Marko-Varga G, Hancock W S. Rapid proteome analysis of bronchoalveolar lavage samples of lifelong smokers and never-smokers by micro-scale liquid chromatography and mass spectrometry. Clin Chem 2006; 52: 671–679
  • Nicholas B, Skipp P, Mould R, Rennard S, Davies D E, O'Connor C D, Djukanovic R. Shotgun proteomic analysis of human-induced sputum. Proteomics 2006; 6: 4390–4401
  • Millea K M, Krull I S, Chakraborty A B, Gebler J C, Berger S J. Comparative profiling of human saliva by intact protein LC/ESI-TOF mass spectrometry. Biochim Biophys Acta 2007; 1774: 897–906
  • Hu S, Xie Y, Ramachandran P, Ogorzalek Loo R R, Li Y, Loo J A, Wong D T. Large-scale identification of proteins in human salivary proteome by liquid chromatography/mass spectrometry and two-dimensional gel electrophoresis-mass spectrometry. Proteomics 2005; 5: 1714–1728
  • Hu S, Yu T, Xie Y, Yang Y, Li Y, Zhou X, Tsung S, Loo R R, Loo J R, Wong D T. Discovery of oral fluid biomarkers for human oral cancer by mass spectrometry. Cancer Genomics Proteomics 2007; 4: 55–64
  • Hardt M, Thomas L R, Dixon S E, Newport G, Agabian N, Prakobphol A, Hall S C, Witkowska H E, Fisher S J. Toward defining the human parotid gland salivary proteome and peptidome: identification and characterization using 2D SDS-PAGE, ultrafiltration, HPLC, and mass spectrometry. Biochemistry 2005; 44: 2885–2899
  • Huang C M. Comparative proteomic analysis of human whole saliva. Arch Oral Biol 2004; 49: 951–962
  • Xie H, Rhodus N L, Griffin R J, Carlis J V, Griffin T J. A catalogue of human saliva proteins identified by free flow electrophoresis-based peptide separation and tandem mass spectrometry. Mol Cell Proteomics 2005; 4: 1826–1830
  • Amado F M, Vitorino R M, Domingues P M, Lobo M J, Duarte J A. Analysis of the human saliva proteome. Expert Rev Proteomics 2005; 2: 521–539
  • Kipnis E, Hansen K, Sawa T, Moriyama K, Zurawel A, Ishizaka A, Wiener-Kronish J. Proteomic analysis of undiluted lung epithelial lining fluid. Chest 2008; 134: 338–345
  • Debat H, Eloit C, Blon F, Sarazin B, Henry C, Huet J C, Trotier D, Pernollet J C. Identification of human olfactory cleft mucus proteins using proteomic analysis. J Proteome Res 2007; 6: 1985–1996
  • Ghafouri B, Irander K, Lindbom J, Tagesson C, Lindahl M. Comparative proteomics of nasal fluid in seasonal allergic rhinitis. J Proteome Res 2006; 5: 330–338
  • Casado B, Pannell L K, Viglio S, Iadarola P, Baraniuk J N. Analysis of the sinusitis nasal lavage fluid proteome using capillary liquid chromatography interfaced to electrospray ionization-quadrupole time of flight-tandem mass spectrometry. Electrophoresis 2004; 25: 1386–1393
  • Casado B, Pannell L K, Iadarola P, Baraniuk J N. Identification of human nasal mucous proteins using proteomics. Proteomics 2005; 5: 2949–2959
  • Bryborn M, Adner M, Cardell L O. Psoriasin, one of several new proteins identified in nasal lavage fluid from allergic and non-allergic individuals using 2-dimensional gel electrophoresis and mass spectrometry. Respir Res 2005; 6: 118
  • Malmstrom J, Larsen K, Malmstrom L, Tufvesson E, Parker K, Marchese J, Williamson B, Patterson D, Martin S, Juhasz P, et al. Nanocapillary liquid chromatography interfaced to tandem matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry: mapping the nuclear proteome of human fibroblasts. Electrophoresis 2003; 24: 3806–3814
  • Malmstrom J, Larsen K, Malmstrom L, Tufvesson E, Parker K, Marchese J, Williamson B, Hattan S, Patterson D, Martin S, et al. Proteome annotations and identifications of the human pulmonary fibroblast. J Proteome Res 2004; 3: 525–537
  • Bogatkevich G S, Ludwicka-Bradley A, Singleton C B, Bethard J R, Silver R M. Proteomic analysis of CTGF-activated lung fibroblasts: identification of IQGAP1 as a key player in lung fibroblast migration. Am J Physiol Lung Cell Mol Physiol 2008; 295: L603–L611
  • Kelsen S G, Duan X, Ji R, Perez O, Liu C, Merali S. Cigarette smoke induces an unfolded protein response in the human lung: a proteomic approach. Am J Respir Cell Mol Biol 2008; 38: 541–550
  • Li C, Zhan X, Li M, Wu X, Li F, Li J, Xiao Z, Chen Z, Feng X, Chen P, et al. Proteomic comparison of two-dimensional gel electrophoresis profiles from human lung squamous carcinoma and normal bronchial epithelial tissues. Genomics Proteomics Bioinformatics 2003; 1: 58–67
  • Zhao H, Adler K B, Bai C, Tang F, Wang X. Epithelial proteomics in multiple organs and tissues: similarities and variations between cells, organs, and diseases. J Proteome Res 2006; 5: 743–755
  • Jin M, Opalek J M, Marsh C B, Wu H M. Proteome comparison of alveolar macrophages with monocytes reveals distinct protein characteristics. Am J Respir Cell Mol Biol 2004; 31: 322–329
  • Bozinovski S, Hutchinson A, Thompson M, Macgregor L, Black J, Giannakis E, Karlsson A S, Silvestrini R, Smallwood D, Vlahos R, et al. Serum amyloid a is a biomarker of acute exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2008; 177: 269–278
  • Bai Y, Galetskiy D, Damoc E, Paschen C, Liu Z, Griese M, Liu S, Przybylski M. High resolution mass spectrometric alveolar proteomics: identification of surfactant protein SP-A and SP-D modifications in proteinosis and cystic fibrosis patients. Proteomics 2004; 4: 2300–2309
  • Ohlmeier S, Vuolanto M, Toljamo T, Vuopala K, Salmenkivi K, Myllarniemi M, Kinnula V L. Proteomics of human lung tissue identifies surfactant protein A as a marker of chronic obstructive pulmonary disease. J Proteome Res 2008; 7: 5125–5132
  • Casado B, Iadarola P, Pannell L K, Luisetti M, Corsico A, Ansaldo E, Ferrarotti I, Boschetto P, Baraniuk J N. Protein expression in sputum of smokers and chronic obstructive pulmonary disease patients: a pilot study by CapLC-ESI-Q-TOF. J Proteome Res 2007; 6: 4615–4623
  • Reynolds S D, Reynolds P R, Pryhuber G S, Finder J D, Stripp B R. Secretoglobins SCGB3A1 and SCGB3A2 define secretory cell subsets in mouse and human airways. Am J Respir Crit Care Med 2002; 166: 1498–1509
  • Gray R D, MacGregor G, Noble D, Imrie M, Dewar M, Boyd A C, Innes J A, Porteous D J, Greening A P. Sputum proteomics in inflammatory and suppurative respiratory diseases. Am J Respir Crit Care Med 2008; 178: 444–452
  • Ekblad L, Baldetorp B, Ferno M, Olsson H, Bratt C. In-source decay causes artifacts in SELDI-TOF MS spectra. J Proteome Res 2007; 6: 1609–1614
  • Semmes O J, Feng Z, Adam B L, Banez L L, Bigbee W L, Campos D, Cazares L H, Chan D W, Grizzle W E, Izbicka E, et al. Evaluation of serum protein profiling by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry for the detection of prostate cancer: I. Assessment of platform reproducibility. Clin Chem 2005; 51: 102–112
  • Lorenz E, Muhlebach M S, Tessier P A, Alexis N E, Duncan H R, Seeds M C, Peden D B, Meredith W. Different expression ratio of S100A8/A9 and S100A12 in acute and chronic lung diseases. Respir Med 2008; 102: 567–573
  • Uhlen M. Affinity as a tool in life science. Biotechniques 2008; 44: 649–654
  • Hober S, Uhlen M. Human protein atlas and the use of microarray technologies. Curr Opin Biotechnol 2008; 19: 30–35
  • Kuhn E, Wu J, Karl J, Liao H, Zolg W, Guild B. Quantification of C-reactive protein in the serum of patients with rheumatoid arthritis using multiple reaction monitoring mass spectrometry and 13C-labeled peptide standards. Proteomics 2004; 4: 1175–1186
  • Anderson L, Hunter C L. Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol Cell Proteomics 2006; 5: 573–588
  • McDonnell L A, Heeren R M. Imaging mass spectrometry. Mass Spectrom Rev 2007; 26: 606–643
  • Khatib-Shahidi S, Andersson M, Herman J L, Gillespie T A, Caprioli R M. Direct molecular analysis of whole-body animal tissue sections by imaging MALDI mass spectrometry. Anal Chem 2006; 78: 6448–6456
  • Andersson M, Groseclose M R, Deutch A Y, Caprioli R M. Imaging mass spectrometry of proteins and peptides: 3D volume reconstruction. Nat Meth 2008; 5: 101–108
  • Sinha T K, Khatib-Shahidi S, Yankeelov T E, Mapara K, Ehtesham M, Cornett D S, Dawant B M, Caprioli R M, Gore J C. Integrating spatially resolved three-dimensional MALDI IMS with in vivo magnetic resonance imaging. Nat Meth 2008; 5: 57–59
  • Bachi A, Bonaldi T. Quantitative proteomics as a new piece of the systems biology puzzle. J Proteomics 2008; 71: 357–367
  • Preisinger C, von K A, Matallanas D, Kolch W. Proteomics and phosphoproteomics for the mapping of cellular signalling networks. Proteomics 2008; 8: 4402–4415

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.