2,319
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Identification of Potential Differentially-Methylated/Expressed Genes in Chronic Obstructive Pulmonary Disease

, , , , , , , & show all
Pages 44-54 | Received 31 Aug 2022, Accepted 08 Dec 2022, Published online: 19 Jan 2023

References

  • Decramer M, Janssens W, Miravitlles M. Chronic obstructive pulmonary disease. Lancet. 2012;379(9823):1341–1351. DOI:10.1016/S0140-6736(11)60968-9
  • Agusti A, Soriano JB. COPD as a systemic disease. COPD. 2008;5(2):133–138. DOI:10.1080/15412550801941349
  • Kurimoto E, Miyahara N, Kanehiro A, et al. IL-17A is essential to the development of elastase-induced pulmonary inflammation and emphysema in mice. Respir Res. 2013;14(1):5. DOI:10.1186/1465-9921-14-5
  • Barnes PJ. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2016;138(1):16–27. DOI:10.1016/j.jaci.2016.05.011
  • Fujii U, Miyahara N, Taniguchi A, et al. IL-23 is essential for the development of elastase-induced pulmonary inflammation and emphysema. Am J Respir Cell Mol Biol. 2016;55(5):697–707. DOI:10.1165/rcmb.2016-0015OC
  • Cosio MG, Saetta M, Agusti A. Immunologic aspects of chronic obstructive pulmonary disease. N Engl J Med. 2009;360(23):2445–2454. DOI:10.1056/NEJMra0804752
  • Núñez B, Sauleda J, Antó JM, PAC-COPD Investigators, et al. Anti-tissue antibodies are related to lung function in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2011;183(8):1025–1031. DOI:10.1164/rccm.201001-0029OC
  • Bonarius HP, Brandsma CA, Kerstjens HA, et al. Antinuclear autoantibodies are more prevalent in COPD in association with low body mass index but not with smoking history. Thorax. 2011;66(2):101–107. DOI:10.1136/thx.2009.134171
  • Arnson Y, Shoenfeld Y, Amital H. Effects of tobacco smoke on immunity, inflammation and autoimmunity. J Autoimmun. 2010;34(3):J258–J265. DOI:10.1016/j.jaut.2009.12.003
  • Halpin DMG, Criner GJ, Papi A, et al. Global initiative for the diagnosis, management, and prevention of chronic obstructive lung disease. The 2020 GOLD science committee report on COVID-19 and chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2021;203(1):24–36. DOI:10.1164/rccm.202009-3533SO
  • Taniguchi A, Miyahara N, Oda N, et al. Protective effects of bisoprolol against acute exacerbation in moderate-to-severe chronic obstructive pulmonary disease. Acta Med Okayama. 2017;71(5):453–457.
  • Oda N, Miyahara N, Ichikawa H, et al. Long-term effects of beta-blocker use on lung function in Japanese patients with chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2017;12:1119–1124. DOI:10.2147/COPD.S133071
  • Almagro P, Martinez-Camblor P, Soriano JB, et al. Finding the best thresholds of FEV1 and dyspnea to predict 5-year survival in COPD patients: the COCOMICS study. PLoS One. 2014;9(2):e89866. DOI:10.1371/journal.pone.0089866
  • Lowe KE, Regan EA, Anzueto A, et al. COPDGene(®) 2019: redefining the diagnosis of chronic obstructive pulmonary disease. J COPD F. 2019;6(5):384–399. DOI:10.15326/jcopdf.6.5.2019.0149
  • Rotondo JC, Aquila G, Oton-Gonzalez L, et al. Methylation of SERPINA1 gene promoter may predict chronic obstructive pulmonary disease in patients affected by acute coronary syndrome. Clin Epigenetics. 2021;13(1):79.
  • Qiu W, Baccarelli A, Carey VJ, et al. Variable DNA methylation is associated with chronic obstructive pulmonary disease and lung function. Am J Respir Crit Care Med. 2012;185(4):373–381. DOI:10.1164/rccm.201108-1382OC
  • Vucic EA, Chari R, Thu KL, et al. DNA methylation is globally disrupted and associated with expression changes in chronic obstructive pulmonary disease small airways. Am J Respir Cell Mol Biol. 2014;50(5):912–922. DOI:10.1165/rcmb.2013-0304OC
  • Sundar IK, Yin Q, Baier BS, et al. DNA methylation profiling in peripheral lung tissues of smokers and patients with COPD. Clin Epigenetics. 2017;9:38. DOI:10.1186/s13148-017-0335-5
  • Vicente CT, Revez JA, Ferreira MAR. Lessons from ten years of genome-wide association studies of asthma. Clin Transl Immunol. 2017;6(12):e165. DOI:10.1038/cti.2017.54
  • Zhao W, Yue X, Liu K, et al. The status of pulmonary fibrosis in systemic sclerosis is associated with IRF5, STAT4, IRAK1, and CTGF polymorphisms. Rheumatol Int. 2017;37(8):1303–1310. DOI:10.1007/s00296-017-3722-5
  • Kalathil SG, Lugade AA, Pradhan V, et al. T-regulatory cells and programmed death 1+ T cells contribute to effector T-cell dysfunction in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2014;190(1):40–50. DOI:10.1164/rccm.201312-2293OC
  • Grundy S, Plumb J, Lea S, et al. Down regulation of T cell receptor expression in COPD pulmonary CD8 cells. PLoS One. 2013;8(8):e71629. DOI:10.1371/journal.pone.0071629
  • Hurst JR, Vestbo J, Anzueto A, Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) Investigators, et al. Susceptibility to exacerbation in chronic obstructive pulmonary disease. N Engl J Med. 2010;363(12):1128–1138. DOI:10.1056/NEJMoa0909883
  • Li L, Lv J, He Y, et al. Gene network in pulmonary tuberculosis based on bioinformatic analysis. BMC Infect Dis. 2020;20(1):612. DOI:10.1186/s12879-020-05335-6
  • Rogers AV, Adelroth E, Hattotuwa K, et al. Bronchial mucosal dendritic cells in smokers and ex-smokers with COPD: an electron microscopic study. Thorax. 2008;63(2):108–114. DOI:10.1136/thx.2007.078253
  • Liao SX, Ding T, Rao XM, et al. Cigarette smoke affects dendritic cell maturation in the small airways of patients with chronic obstructive pulmonary disease. Mol Med Rep. 2015;11(1):219–225. DOI:10.3892/mmr.2014.2759
  • Shrestha D, Ye GX, Stabley D, et al. Pulmonary immune cell transcriptome changes in double-hit model of BPD induced by chorioamnionitis and postnatal hyperoxia. Pediatr Res. 2021;90(3):565–575. DOI:10.1038/s41390-020-01319-z
  • Zhang J, Liu J, Xu S, et al. Bioinformatics analyses of the pathogenesis and new biomarkers of chronic obstructive pulmonary disease. Medicine (Baltimore). 2021;100(46):e27737. DOI:10.1097/MD.0000000000027737
  • Laulajainen-Hongisto A, Lyly A, Hanif T, et al. Genomics of asthma, allergy and chronic rhinosinusitis: novel concepts and relevance in airway mucosa. Clin Transl Allergy. 2020;10(1):45. DOI:10.1186/s13601-020-00347-6
  • Kreiner E, Waage J, Standl M, et al. Shared genetic variants suggest common pathways in allergy and autoimmune diseases. J Allergy Clin Immunol. 2017;140(3):771–781. DOI:10.1016/j.jaci.2016.10.055
  • Muro S, Tabara Y, Matsumoto H, Nagahama Study Group, et al. Relationship among Chlamydia and Mycoplasma pneumoniae seropositivity, IKZF1 genotype and chronic obstructive pulmonary disease in a general Japanese population: the Nagahama study. Medicine (Baltimore). 2016;95(15):e3371. DOI:10.1097/MD.0000000000003371
  • Lin LT, Richardson CD. The host cell receptors for measles virus and their interaction with the viral hemagglutinin (H) Protein. Viruses. 2016;8(9):250. DOI:10.3390/v8090250
  • Whittle E, Leonard MO, Gant TW, et al. Multi-Method molecular characterisation of human Dust-Mite-associated allergic asthma. Sci Rep. 2019;9(1):8912. DOI:10.1038/s41598-019-45257-1
  • Ridolo E, Pucciarini F, Nizi MC, et al. Mabs for treating asthma: omalizumab, mepolizumab, reslizumab, benralizumab, dupilumab. Hum Vaccin Immunother. 2020;16(10):2349–2356. DOI:10.1080/21645515.2020.1753440
  • Wu X, Sun X, Chen C, et al. Dynamic gene expressions of peripheral blood mononuclear cells in patients with acute exacerbation of chronic obstructive pulmonary disease: a preliminary study. Crit Care. 2014;18(6):508. DOI:10.1186/s13054-014-0508-y
  • Chesné J, Danger R, Botturi K, COLT Consortium, et al. Systematic analysis of blood cell transcriptome in end-stage chronic respiratory diseases. PLoS One. 2014;9(10):e109291. DOI:10.1371/journal.pone.0109291
  • Sangle NA, Agarwal AM, Smock KJ, et al. Diffuse large B-cell lymphoma with aberrant expression of the T-cell antigens CD2 and CD7. Appl Immunohistochem Mol Morphol. 2011;19(6):579–583. DOI:10.1097/PAI.0b013e318221c672
  • Schwartz AG. Genetic epidemiology of cigarette smoke-induced lung disease. Proc Am Thorac Soc. 2012;9(2):22–26. DOI:10.1513/pats.201106-037MS
  • Smith NL, Hankinson J, Simpson A, et al. Reduced expression of TLR3, TLR10 and TREM1 by human macrophages in chronic cavitary pulmonary aspergillosis, and novel associations of VEGFA, DENND1B and PLAT. Clin Microbiol Infect. 2014;20(11):O960–8. DOI:10.1111/1469-0691.12643
  • Raedler D, Ballenberger N, Klucker E, et al. Identification of novel immune phenotypes for allergic and nonallergic childhood asthma. J Allergy Clin Immunol. 2015;135(1):81–91. DOI:10.1016/j.jaci.2014.07.046
  • Buckland KF, Ramaprakash H, Murray LA, et al. Triggering receptor expressed on myeloid cells-1 (TREM-1) modulates immune responses to Aspergillus fumigatus during fungal asthma in mice. Immunol Invest. 2011;40(7-8):692–722. DOI:10.3109/08820139.2011.578270
  • Karlsson T, Glogauer M, Ellen RP, et al. Aquaporin 9 phosphorylation mediates membrane localization and neutrophil polarization. J Leukoc Biol. 2011;90(5):963–973. DOI:10.1189/jlb.0910540
  • Grigoryev DN, Cheranova DI, Chaudhary S, et al. Identification of new biomarkers for acute respiratory distress syndrome by expression-based genome-wide association study. BMC Pulm Med. 2015;15:95. DOI:10.1186/s12890-015-0088-x
  • Maghsoudloo M, Azimzadeh Jamalkandi S, Najafi A, et al. Identification of biomarkers in common chronic lung diseases by co-expression networks and drug-target interactions analysis. Mol Med. 2020;26(1):9.
  • McDonald ML, Cho MH, Sørheim IC, Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints and COPDGene Investigators, et al. Common genetic variants associated with resting oxygenation in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2014;51(5):678–687. DOI:10.1165/rcmb.2014-0135OC
  • Uehara A, Fujimoto Y, Fukase K, et al. Various human epithelial cells express functional toll-like receptors, NOD1 and NOD2 to produce anti-microbial peptides, but not proinflammatory cytokines. Mol Immunol. 2007;44(12):3100–3111. DOI:10.1016/j.molimm.2007.02.007
  • Adler J, Rangwalla SC, Dwamena BA, et al. The prognostic power of the NOD2 genotype for complicated Crohn’s disease: a meta-analysis. Am J Gastroenterol. 2011;106(4):699–712. DOI:10.1038/ajg.2011.19
  • Kinose D, Ogawa E, Hirota T, et al. A NOD2 gene polymorphism is associated with the prevalence and severity of chronic obstructive pulmonary disease in a Japanese population. Respirology. 2012;17(1):164–171. DOI:10.1111/j.1440-1843.2011.02069.x
  • Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42(Database issue):D68–73. DOI:10.1093/nar/gkt1181
  • Baines KJ, Fu JJ, McDonald VM, et al. Airway gene expression of IL-1 pathway mediators predicts exacerbation risk in obstructive airway disease. Int J Chron Obstruct Pulmon Dis. 2017;12:541–550. DOI:10.2147/COPD.S119443
  • Faner R, Sobradillo P, Noguera A, et al. The inflammasome pathway in stable COPD and acute exacerbations. ERJ Open Res. 2016;2(3):00002-2016. DOI:10.1183/23120541.00002-2016
  • Yang Y, Huang L, Tian C, et al. Magnesium isoglycyrrhizinate inhibits airway inflammation in rats with chronic obstructive pulmonary disease. BMC Pulm Med. 2021;21(1):371. DOI:10.1186/s12890-021-01745-7
  • Zhang J, Xu Q, Sun W, et al. New insights into the role of NLRP3 inflammasome in pathogenesis and treatment of chronic obstructive pulmonary disease. JIR. 2021;14:4155–4168. DOI:10.2147/JIR.S324323
  • Yang W, Ni H, Wang H, et al. NLRP3 inflammasome is essential for the development of chronic obstructive pulmonary disease. Int J Clin Exp Pathol. 2015;8(10):13209–13216.
  • Sun X, Hou T, Cheung E, et al. Anti-inflammatory mechanisms of the novel cytokine interleukin-38 in allergic asthma. Cell Mol Immunol. 2020;17(6):631–646. DOI:10.1038/s41423-019-0300-7
  • Sharma A, Kitsak M, Cho MH, et al. Integration of molecular interactome and targeted interaction analysis to identify a COPD disease network module. Sci Rep. 2018;8(1):14439. DOI:10.1038/s41598-018-32173-z
  • Zheng Y, Zhang M, Qian M, et al. Genetic comparison of mouse lung telocytes with mesenchymal stem cells and fibroblasts. J Cell Mol Med. 2013;17(4):567–577. DOI:10.1111/jcmm.12052
  • Pietrzyk JJ, Kwinta P, Wollen EJ, et al. Gene expression profiling in preterm infants: new aspects of bronchopulmonary dysplasia development. PLoS One. 2013;8(10):e78585. DOI:10.1371/journal.pone.0078585
  • Karatzas E, Bourdakou MM, Kolios G, et al. Drug repurposing in idiopathic pulmonary fibrosis filtered by a bioinformatics-derived composite score. Sci Rep. 2017;7(1):12569. DOI:10.1038/s41598-017-12849-8
  • Dang X, Qu X, Wang W, et al. Bioinformatic analysis of microRNA and mRNA regulation in peripheral blood mononuclear cells of patients with chronic obstructive pulmonary disease. Respir Res. 2017;18(1):4. DOI:10.1186/s12931-016-0486-5
  • Bi H, Zhou J, Wu D, et al. Microarray analysis of long non-coding RNAs in COPD lung tissue. Inflamm Res. 2015;64(2):119–126. DOI:10.1007/s00011-014-0790-9
  • Teruya H, Tomita M, Senba M, et al. Human T-cell leukemia virus type I infects human lung epithelial cells and induces gene expression of cytokines, chemokines and cell adhesion molecules. Retrovirology. 2008;5(1):86. DOI:10.1186/1742-4690-5-86
  • Miao R, Dong X, Gong J, et al. Hsa-miR-106b-5p participates in the development of chronic thromboembolic pulmonary hypertension via targeting matrix metalloproteinase 2. Pulm Circ. 2020;10(3):2045894020928300. DOI:10.1177/2045894020928300
  • Duffney PF, Embong AK, McGuire CC, et al. Cigarette smoke increases susceptibility to infection in lung epithelial cells by upregulating caveolin-dependent endocytosis. PLoS One. 2020;15(5):e0232102. DOI:10.1371/journal.pone.0232102
  • Halu A, Liu S, Baek SH, et al. Exploring the cross-phenotype network region of disease modules reveals concordant and discordant pathways between chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Hum Mol Genet. 2019;28(14):2352–2364. DOI:10.1093/hmg/ddz069
  • Barnes PJ. Kinases as novel therapeutic targets in asthma and chronic obstructive pulmonary disease. Pharmacol Rev. 2016;68(3):788–815. DOI:10.1124/pr.116.012518