2,379
Views
0
CrossRef citations to date
0
Altmetric
Research Article

LncRNA H19 Contributes to Smoke-Related Chronic Obstructive Pulmonary Disease by Targeting miR-181/PDCD4 Axis

, , , &
Pages 119-125 | Received 15 Sep 2022, Accepted 18 Nov 2022, Published online: 21 Mar 2023

References

  • Rabe KF, Watz H. Chronic obstructive pulmonary disease. Lancet. 2017;389(10082):1931–1940. DOI:10.1016/S0140-6736(17)31222-9
  • Altawalbeh SM, Hijazi B, Kufoof L, et al. Health expenditures of asthma-COPD overlap in Northern Jordan. PLoS One. 2021;16(9):e0257566. DOI:10.1371/journal.pone.0257566
  • Burke H, Wilkinson TMA. Unravelling the mechanisms driving multimorbidity in COPD to develop holistic approaches to patient-centred care. Eur Respir Rev. 2021;30(160):210041. DOI:10.1183/16000617.0041-2021
  • Roman-Rodriguez M, Kaplan A. GOLD 2021 strategy report: implications for asthma-COPD overlap. Int J Chron Obstruct Pulmon Dis. 2021;16:1709–1715. DOI:10.2147/COPD.S300902
  • Borghi-Silva A, Garcia-Araújo AS, Winkermann E, et al. Exercise-based rehabilitation delivery models in comorbid chronic pulmonary disease and chronic heart failure. Front Cardiovasc Med. 2021;8:729073. DOI:10.3389/fcvm.2021.729073
  • Raveling T, Vonk J, Struik FM, et al. Chronic non-invasive ventilation for chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2021;8(8):Cd002878. DOI:10.1002/14651858.CD002878.pub3
  • Watson A, Wilkinson TMA, Freeman A. Evidence around the impact of pulmonary rehabilitation and exercise on redox status in COPD: a systematic review. Front Sports Act Living. 2021;3:782590. DOI:10.3389/fspor.2021.782590
  • Su W, Huo Q, Wu H, et al. The function of LncRNA-H19 in cardiac hypertrophy. Cell Biosci. 2021;11(1):153. DOI:10.1186/s13578-021-00668-4
  • Chen S, Liu D, Zhou Z, et al. Role of long non-coding RNA H19 in the development of osteoporosis. Mol Med. 2021;27(1):122. DOI:10.1186/s10020-021-00386-0
  • Adolfo JR, Dhein W, Sbruzzi G. Intensity of physical exercise and its effect on functional capacity in COPD: systematic review and meta-analysis. J Bras Pneumol. 2019;45(6):e20180011. DOI:10.1590/1806-3713/e20180011
  • Poulet C, Njock MS, Moermans C, et al. Exosomal long non-coding RNAs in lung diseases. Int J Mol Sci. 2020;21(10):3580. DOI:10.3390/ijms21103580
  • Wang X, Cheng Z, Dai L, et al. Knockdown of long noncoding RNA H19 represses the progress of pulmonary fibrosis through the transforming growth factor β/Smad3 pathway by regulating MicroRNA 140. Mol Cell Biol. 2019;39(12):e00143–19. DOI:10.1128/MCB.00143-19
  • Huang Y. The novel regulatory role of lncRNA-miRNA-mRNA axis in cardiovascular diseases. J Cell Mol Med. 2018;22(12):5768–5775. DOI:10.1111/jcmm.13866
  • Cassady SJ, Reed RM. Pulmonary hypertension in COPD: a case study and review of the literature. Medicina (Kaunas, Lithuania). 2019;55(8):432. DOI:10.3390/medicina55080432
  • Zuo L, Wijegunawardana D. Redox role of ROS and inflammation in pulmonary diseases. Adv Exp Med Biol. 2021;1304:187–204. DOI:10.1007/978-3-030-68748-9_11
  • Tian X, Xue Y, Xie G, et al. (-)-epicatechin ameliorates cigarette smoke-induced lung inflammation via inhibiting ROS/NLRP3 inflammasome pathway in rats with COPD. Toxicol Appl Pharmacol. 2021;429:115674. DOI:10.1016/j.taap.2021.115674
  • Hou W, Hu S, Li C, et al. Cigarette smoke induced lung barrier dysfunction, EMT, and tissue remodeling: a possible link between COPD and lung cancer. Biomed Res Int. 2019;2019:2025636. DOI:10.1155/2019/2025636
  • Shukla S, Ward C, Walters EH. Mechanistic insights on EMT and smoking-related COPD. Stem Cell Rev Rep. 2021;17(4):1503–1504. DOI:10.1007/s12015-021-10152-8
  • Wang Q, Sundar IK, Lucas JH, et al. Molecular clock REV-ERBα regulates cigarette smoke-induced pulmonary inflammation and epithelial-mesenchymal transition. JCI Insight. 2021;6(12):e145200. DOI:10.1172/jci.insight.145200
  • Lu J, Wang Y, Hu Y, et al. Lnc-H19 enhances anaerobic glycolysis of keloid fibroblasts by targeting the miR-214-5p/FGF2 axis. Burns. 2021. DOI:10.1016/j.burns.2021.07.015
  • Ma N, Tie C, Yu B, et al. Identifying lncRNA-miRNA-mRNA networks to investigate Alzheimer’s disease pathogenesis and therapy strategy. Aging (Albany NY). 2020;12(3):2897–2920. 72920. DOI:10.18632/aging.102785
  • Wang JY, Yang Y, Ma Y, et al. Potential regulatory role of lncRNA-miRNA-mRNA axis in osteosarcoma. Biomed Pharmacother. 2020;121:109627. DOI:10.1016/j.biopha.2019.109627
  • Zheng Y, Zhang Y, Zhang X, et al. Novel lncRNA-miRNA-mRNA competing endogenous RNA triple networks associated programmed cell death in heart failure. Front Cardiovasc Med. 2021;8:747449. DOI:10.3389/fcvm.2021.747449
  • Ma XF, Qin J, Guo XH. MiR-181-5p protects mice from sepsis via repressing HMGB1 in an experimental model. Eur Rev Med Pharmacol Sci. 2020;24(18):9712–9720.
  • Zhao S, Lin C, Yang T, et al. Expression of long non-coding RNA LUCAT1 in patients with chronic obstructive pulmonary disease and its potential functions in regulating cigarette smoke extract-induced 16HBE cell proliferation and apoptosis. J Clin Lab Anal. 2021;35(7):e23823. DOI:10.1002/jcla.23823
  • Hwang SK, Jeong YJ, Chang YC. PDCD4 inhibits lung tumorigenesis by the suppressing p62-Nrf2 signaling pathway and upregulating Keap1 expression. Am J Cancer Res. 2020;10(2):424–439.
  • Cho JH, Kim YW, Choi BY, et al. Sulforaphane inhibition of TPA-mediated PDCD4 downregulation contributes to suppression of c-Jun and induction of p21-dependent Nrf2 expression. Eur J Pharmacol. 2014;741:247–253. DOI:10.1016/j.ejphar.2014.08.007
  • Jain S, Durugkar S, Saha P, et al. Effects of intranasal azithromycin on features of cigarette smoke-induced lung inflammation. Eur J Pharmacol. 2022;915:174467. DOI:10.1016/j.ejphar.2021.174467
  • Yeo CD, Kim JW, Ha JH, et al. Chemopreventive effect of phosphodieasterase-4 inhibition in benzo(a)pyrene-induced murine lung cancer model. Exp Lung Res. 2014;40(10):500–506. DOI:10.3109/01902148.2014.950769