1,270
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Chest MRI and CT Predictors of 10-Year All-Cause Mortality in COPD

, , , &
Pages 307-320 | Received 11 May 2023, Accepted 11 Sep 2023, Published online: 22 Sep 2023

References

  • Adeloye D, Song P, Zhu Y, et al. Global, regional, and national prevalence of, and risk factors for, chronic obstructive pulmonary disease (COPD) in 2019: a systematic review and modelling analysis. Lancet Respir Med. 2022;10(5):447–458. doi: 10.1016/S2213-2600(21)00511-7.
  • Jones RC, Donaldson GC, Chavannes NH, et al. Derivation and validation of a composite index of severity in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2009;180(12):1189–1195. doi: 10.1164/rccm.200902-0271OC.
  • Mohd Shah A, Mohd Anshar F, Mohd Perdaus Ahmad F, et al. The SAFE (SGRQ score, air-flow limitation and exercise tolerance) index: a new composite score for the stratification of severity in chronic obstructive pulmonary disease. Postgrad Med J. 2007;83(981):492.
  • Puhan MA, Garcia-Aymerich J, Frey M, et al. Expansion of the prognostic assessment of patients with chronic obstructive pulmonary disease: the updated BODE index and the ADO index. Lancet. 2009;374(9691):704–711. doi: 10.1016/S0140-6736(09)61301-5.
  • Celli BR, Cote CG, Marin JM, et al. The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease. N Engl J Med. 2004;350(10):1005–1012. doi: 10.1056/NEJMoa021322.
  • Guerra B, Haile SR, Lamprecht B, et al. Large-scale external validation and comparison of prognostic models: an application to chronic obstructive pulmonary disease. BMC Med. 2018;16(1):33. doi: 10.1186/s12916-018-1013-y.
  • Fletcher C, Peto R. The natural history of chronic airflow obstruction. Br Med J. 1977;1(6077):1645–1648. doi: 10.1136/bmj.1.6077.1645.
  • Kakavas S, Kotsiou OS, Perlikos F, et al. Pulmonary function testing in COPD: looking beyond the curtain of FEV1. NPJ Prim Care Respir Med. 2021;31(1):23. doi: 10.1038/s41533-021-00236-w.
  • Singh D, Agusti A, Anzueto A, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease: the GOLD science committee report 2019. Eur Respir J. 2019;53(5):1900164. doi: 10.1183/13993003.00164-2019.
  • Vestbo J, Hurd SS, Agusti AG, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med. 2013;187(4):347–365. doi: 10.1164/rccm.201204-0596PP.
  • Burgel PR, Bourdin A, Chanez P, et al. Update on the roles of distal airways in COPD. Eur Respir Rev. 2011;20(119):7–22.
  • de Jong PA, Muller NL, Pare PD, et al. Computed tomographic imaging of the airways: relationship to structure and function. Eur Respir J. 2005;26(1):140–152. doi: 10.1183/09031936.05.00007105.
  • Kirby M, Tanabe N, Tan WC, et al. Total airway count on computed tomography and the risk of chronic obstructive pulmonary disease progression. Findings from a population-based study. Am J Respir Crit Care Med. 2018;197(1):56–65. doi: 10.1164/rccm.201704-0692OC.
  • Galban CJ, Han MK, Boes JL, et al. Computed tomography-based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression. Nat Med. 2012;18(11):1711–1715. doi: 10.1038/nm.2971.
  • Ash SY, San José Estépar R, Fain SB, et al. Relationship between emphysema progression at CT and mortality in Ever-Smokers: results from the COPDGene and ECLIPSE cohorts. Radiology. 2021;299(1):222–231. doi: 10.1148/radiol.2021203531.
  • Baraghoshi D, Strand M, Humphries SM, et al. Quantitative CT evaluation of emphysema progression over 10 years in the COPDGene study. Radiology. 2023;2:222786.
  • Washko GR, Nardelli P, Ash SY, et al. Arterial vascular pruning, right ventricular size, and clinical outcomes in chronic obstructive pulmonary disease. A longitudinal observational study. Am J Respir Crit Care Med. 2019;200(4):454–461. doi: 10.1164/rccm.201811-2063OC.
  • Hogg JC, McDonough JE, Suzuki M. Small airway obstruction in COPD: new insights based on micro-CT imaging and MRI imaging. Chest. 2013;143(5):1436–1443. doi: 10.1378/chest.12-1766.
  • McDonough JE, Yuan R, Suzuki M, et al. Small-airway obstruction and emphysema in chronic obstructive pulmonary disease. N Engl J Med. 2011;365(17):1567–1575. doi: 10.1056/NEJMoa1106955.
  • Hogg JC, Macklem PT, Thurlbeck WM. Site and nature of airway obstruction in chronic obstructive lung disease. N Engl J Med. 1968;278(25):1355–1360. doi: 10.1056/NEJM196806202782501.
  • Koo HK, Vasilescu DM, Booth S, et al. Small airways disease in mild and moderate chronic obstructive pulmonary disease: a cross-sectional study. Lancet Respir Med. 2018;6(8):591–602. doi: 10.1016/S2213-2600(18)30196-6.
  • Ohkubo H, Nakagawa H, Niimi A. Computer-based quantitative computed tomography image analysis in idiopathic pulmonary fibrosis: a mini review. Respir Investig. 2018;56(1):5–13. doi: 10.1016/j.resinv.2017.10.003.
  • Lynch DA, Moore CM, Wilson C, et al. CT-based visual classification of emphysema: association with mortality in the COPDGene study. Radiology. 2018;288(3):859–866. doi: 10.1148/radiol.2018172294.
  • Gietema HA, Muller NL, Fauerbach PV, et al. Quantifying the extent of emphysema: factors associated with radiologists’ estimations and quantitative indices of emphysema severity using the ECLIPSE cohort. Acad Radiol. 2011;18(6):661–671. doi: 10.1016/j.acra.2011.01.011.
  • Lubner MG, Smith AD, Sandrasegaran K, et al. CT texture analysis: definitions, applications, biologic correlates, and challenges. Radiographics. 2017;37(5):1483–1503. doi: 10.1148/rg.2017170056.
  • Li Z, Liu L, Zhang Z, et al. A novel CT-Based radiomics features analysis for identification and severity staging of COPD. Acad Radiol. 2022;29(5):663–673. doi: 10.1016/j.acra.2022.01.004.
  • Makimoto K, Hogg JC, Bourbeau J, et al. CT imaging with machine learning for predicting progression to COPD in individuals at risk. Chest. 2023:1–11. doi: 10.1016/j.chest.2023.06.008.
  • Sørensen L, Nielsen M, Petersen J, et al. Chronic obstructive pulmonary disease quantification using CT texture analysis and densitometry: results from the danish lung cancer screening trial. AJR Am J Roentgenol. 2020;214(6):1269–1279. doi: 10.2214/AJR.19.22300.
  • Sørensen L, Shaker SB, de Bruijne M. Quantitative analysis of pulmonary emphysema using local binary patterns. IEEE Trans Med Imaging. 2010;29(2):559–569. doi: 10.1109/TMI.2009.2038575.
  • Ginsburg SB, Zhao J, Humphries S, et al. Texture-based quantification of centrilobular emphysema and centrilobular nodularity in longitudinal CT scans of current and former smokers. Acad Radiol. 2016;23(11):1349–1358. doi: 10.1016/j.acra.2016.06.002.
  • Park YS, Seo JB, Kim N, et al. Texture-based quantification of pulmonary emphysema on high-resolution computed tomography: comparison with density-based quantification and correlation with pulmonary function test. Invest Radiol. 2008;43(6):395–402. doi: 10.1097/RLI.0b013e31816901c7.
  • Ohno Y, Aoyagi K, Takenaka D, et al. Machine learning for lung CT texture analysis: improvement of inter-observer agreement for radiological finding classification in patients with pulmonary diseases. Eur J Radiol. 2021;134:109410. doi: 10.1016/j.ejrad.2020.109410.
  • Sharma M, Wyszkiewicz PV, Desaigoudar V, et al. Quantification of pulmonary functional MRI: state-of-the-art and emerging image processing methods and measurements. Phys Med Biol. 2022;67(22):22TR01. doi: 10.1088/1361-6560/ac9510.
  • Adamson EB, Ludwig KD, Mummy DG, et al. Magnetic resonance imaging with hyperpolarized agents: methods and applications. Phys Med Biol. 2017;62(13):R81–R123. doi: 10.1088/1361-6560/aa6be8.
  • Ohno Y, Seo JB, Parraga G, et al. Pulmonary functional imaging: part 1-State-of-the-Art technical and physiologic underpinnings. Radiology. 2021;299(3):508–523. doi: 10.1148/radiol.2021203711.
  • Kirby M, Heydarian M, Svenningsen S, et al. Hyperpolarized 3He magnetic resonance functional imaging semiautomated segmentation. Acad Radiol. 2012;19(2):141–152. doi: 10.1016/j.acra.2011.10.007.
  • Sukstanskii AL, Yablonskiy DA. Lung morphometry with hyperpolarized 129Xe: theoretical background. Magn Reson Med. 2012;67(3):856–866. doi: 10.1002/mrm.23056.
  • Kirby M, Pike D, Coxson HO, et al. Hyperpolarized (3)He ventilation defects used to predict pulmonary exacerbations in mild to moderate chronic obstructive pulmonary disease. Radiology. 2014;273(3):887–896. doi: 10.1148/radiol.14140161.
  • Eddy RL, Svenningsen S, Kirby M, et al. Is computed tomography airway count related to asthma severity and airway structure and function? Am J Respir Crit Care Med. 2020;201(8):923–933. doi: 10.1164/rccm.201908-1552OC.
  • de Lange EE, Altes TA, Patrie JT, et al. Evaluation of asthma with hyperpolarized helium-3 MRI: correlation with clinical severity and spirometry. Chest. 2006;130(4):1055–1062. doi: 10.1378/chest.130.4.1055.
  • Davis C, Sheikh K, Pike D, et al. Ventilation heterogeneity in never-smokers and COPD:: comparison of pulmonary functional magnetic resonance imaging with the poorly communicating fraction derived from plethysmography. Acad Radiol. 2016;23(4):398–405. doi: 10.1016/j.acra.2015.10.022.
  • Kirby M, Eddy RL, Pike D, et al. MRI ventilation abnormalities predict quality-of-life and lung function changes in mild-to-moderate COPD: longitudinal TINCan study. Thorax. 2017;72(5):475–477. doi: 10.1136/thoraxjnl-2016-209770.
  • Fain SB, Panth SR, Evans MD, et al. Early emphysematous changes in asymptomatic smokers: detection with 3He MR imaging. Radiology. 2006;239(3):875–883. doi: 10.1148/radiol.2393050111.
  • Fain S, Schiebler ML, McCormack DG, et al. Imaging of lung function using hyperpolarized helium-3 magnetic resonance imaging: review of current and emerging translational methods and applications. J Magn Reson Imaging. 2010;32(6):1398–1408. doi: 10.1002/jmri.22375.
  • Sharma M, Westcott A, McCormack D, et al. Hyperpolarized gas magnetic resonance imaging texture analysis and machine learning to explain accelerated lung function decline in ex-smokers with and without COPD. Vol. 11600. SPIE; 2021. (SPIE Medical Imaging).
  • Kirby M, Owrangi A, Svenningsen S, et al. On the role of abnormal DL(CO) in ex-smokers without airflow limitation: symptoms, exercise capacity and hyperpolarised helium-3 MRI. Thorax. 2013;68(8):752–759. doi: 10.1136/thoraxjnl-2012-203108.
  • Kirby M, Mathew L, Wheatley A, et al. Chronic obstructive pulmonary disease: longitudinal hyperpolarized (3)He MR imaging. Radiology. 2010;256(1):280–289. doi: 10.1148/radiol.10091937.
  • Kirby M, Pike D, McCormack DG, et al. Longitudinal computed tomography and magnetic resonance imaging of COPD: thoracic imaging network of Canada (TINCan) study objectives. Chronic Obstr Pulm Dis. 2014;1(2):200–211. doi: 10.15326/jcopdf.1.2.2014.0136.
  • Miller MR, Hankinson J, Brusasco V, et al. Standardisation of spirometry. Eur Respir J. 2005;26(2):319–338. doi: 10.1183/09031936.05.00034805.
  • Harvey BG, Strulovici-Barel Y, Kaner RJ, et al. Risk of COPD with obstruction in active smokers with normal spirometry and reduced diffusion capacity. Eur Respir J. 2015;46(6):1589–1597. doi: 10.1183/13993003.02377-2014.
  • Agarwala P, Salzman SH. Six-Minute walk test: clinical role, technique, coding, and reimbursement. Chest. 2020;157(3):603–611. doi: 10.1016/j.chest.2019.10.014.
  • Jones PW, Quirk FH, Baveystock CM, et al. A self-complete measure of health status for chronic airflow limitation. The St. George’s respiratory questionnaire. Am Rev Respir Dis. 1992;145(6):1321–1327. doi: 10.1164/ajrccm/145.6.1321.
  • Kirby M, Svenningsen S, Owrangi A, et al. Hyperpolarized 3He and 129Xe MR imaging in healthy volunteers and patients with chronic obstructive pulmonary disease. Radiology. 2012;265(2):600–610. doi: 10.1148/radiol.12120485.
  • Estépar RS, Kinney GL, Black-Shinn JL, et al. Computed tomographic measures of pulmonary vascular morphology in smokers and their clinical implications. Am J Respir Crit Care Med. 2013;188(2):231–239. doi: 10.1164/rccm.201301-0162OC.
  • Parraga G, Ouriadov A, Evans A, et al. Hyperpolarized 3He ventilation defects and apparent diffusion coefficients in chronic obstructive pulmonary disease: preliminary results at 3.0 tesla. Invest Radiol. 2007;42(6):384–391. doi: 10.1097/01.rli.0000262571.81771.66.
  • Bink A, Hanisch G, Karg A, et al. Clinical aspects of the apparent diffusion coefficient in 3He MRI: results in healthy volunteers and patients after lung transplantation. J Magn Reson Imaging. 2007;25(6):1152–1158. doi: 10.1002/jmri.20933.
  • Sukstanskii AL, Yablonskiy DA. In vivo lung morphometry with hyperpolarized 3He diffusion MRI: theoretical background. J Magn Reson. 2008;190(2):200–210. doi: 10.1016/j.jmr.2007.10.015.
  • van Griethuysen JJM, Fedorov A, Parmar C, et al. Computational radiomics system to decode the radiographic phenotype. Cancer Res. 2017;77(21):e104–e107. doi: 10.1158/0008-5472.CAN-17-0339.
  • Leijenaar RT, Nalbantov G, Carvalho S, et al. The effect of SUV discretization in quantitative FDG-PET radiomics: the need for standardized methodology in tumor texture analysis. Sci Rep. 2015;5(1):11075. doi: 10.1038/srep11075.
  • Zwanenburg A, Vallières M, Abdalah MA, et al. The image biomarker standardization initiative: standardized quantitative radiomics for High-Throughput image-based phenotyping. Radiology. 2020;295(2):328–338. doi: 10.1148/radiol.2020191145.
  • Rastegar S, Vaziri M, Qasempour Y, et al. Radiomics for classification of bone mineral loss: a machine learning study. Diagn Interv Imaging. 2020;101(9):599–610. doi: 10.1016/j.diii.2020.01.008.
  • Kursa MB, Rudnicki WR. Feature selection with the Boruta Package. J Stat Softw. 2010;36(11):1–13. doi: 10.18637/jss.v036.i11.
  • Webb GI. Naïve bayes. In: Sammut C, Webb GI, editors. Encyclopedia of machine learning. Boston (MA): Springer US; 2010. p. 713–714.
  • Cristianini N, Ricci E. Support vector machines. In: Kao M-Y, editor. Encyclopedia of algorithms. Boston (MA): Springer US; 2008. p. 928–932.
  • Quinlan JR. Induction of decision trees. Mach Learn. 1986;1(1):81–106. doi: 10.1007/BF00116251.
  • Breiman L. Bagging predictors. Mach Learn. 1996;24(2):123–140. doi: 10.1007/BF00058655.
  • Hastie T, Tibshirani R. Discriminant adaptive nearest neighbor classification and regression. Proceedings of the 8th international conference on neural information processing systems. Denver, Colorado: MIT Press; 1995. p. 409–415.
  • Seiffert C, Khoshgoftaar TM, Hulse JV, et al. RUSBoost: a hybrid approach to alleviating class imbalance. IEEE Trans Syst, Man, Cybern A. 2010;40(1):185–197. doi: 10.1109/TSMCA.2009.2029559.
  • Lynch DA, Austin JH, Hogg JC, et al. CT-Definable subtypes of chronic obstructive pulmonary disease: a statement of the fleischner society. Radiology. 2015;277(1):192–205. doi: 10.1148/radiol.2015141579.
  • Yuan NF, Hasenstab K, Retson T, et al. Unsupervised learning identifies computed tomographic measurements as primary drivers of progression, exacerbation, and mortality in chronic obstructive pulmonary disease. Ann Am Thorac Soc. 2022;19(12):1993–2002. doi: 10.1513/AnnalsATS.202110-1127OC.
  • Moll M, Qiao D, Regan EA, et al. Machine learning and prediction of All-Cause mortality in COPD. Chest. 2020;158(3):952–964. doi: 10.1016/j.chest.2020.02.079.
  • Woods JC, Choong CK, Yablonskiy DA, et al. Hyperpolarized 3He diffusion MRI and histology in pulmonary emphysema. Magn Reson Med. 2006;56(6):1293–1300. doi: 10.1002/mrm.21076.
  • Virdee S, Tan WC, Hogg JC, et al. Spatial dependence of CT emphysema in chronic obstructive pulmonary disease quantified by using Join-Count statistics. Radiology. 2021;301(3):702–709. doi: 10.1148/radiol.2021210198.
  • Park J, Hobbs BD, Crapo JD, et al. Subtyping COPD by using visual and quantitative CT imaging features. Chest. 2020;157(1):47–60. doi: 10.1016/j.chest.2019.06.015.
  • Barker AL, Eddy RL, MacNeil JL, et al. CT pulmonary vessels and MRI ventilation in chronic obstructive pulmonary disease: relationship with worsening FEV(1) in the TINCan cohort study. Acad Radiol. 2021;28(4):495–506. doi: 10.1016/j.acra.2020.03.006.
  • Regan EA, Hokanson JE, Murphy JR, et al. Genetic epidemiology of COPD (COPDGene) study design. COPD. 2010;7(1):32–43. doi: 10.3109/15412550903499522.
  • Vestbo J, Anderson W, Coxson HO, et al. Evaluation of COPD longitudinally to identify predictive surrogate end-points (ECLIPSE). Eur Respir J. 2008;31(4):869–873. doi: 10.1183/09031936.00111707.
  • Madani A, Van Muylem A, Gevenois PA. Pulmonary emphysema: effect of lung volume on objective quantification at thin-section CT. Radiology. 2010;257(1):260–268. doi: 10.1148/radiol.10091446.
  • MacNeil JL, Capaldi DPI, Westcott AR, et al. Pulmonary imaging phenotypes of chronic obstructive pulmonary disease using multiparametric response maps. Radiology. 2020;295(1):227–236. doi: 10.1148/radiol.2020191735.
  • Celli BR, Cote CG, Lareau SC, et al. Predictors of survival in COPD: more than just the FEV1. Respir Med. 2008;102 Suppl 1: s 27–35. doi: 10.1016/S0954-6111(08)70005-2.