143
Views
1
CrossRef citations to date
0
Altmetric
Review

Direct Thin Layer Chromatographic Enantioseparation of Active Pharmaceutical Ingredients via Non-Covalent Diastereomers

ORCID Icon & ORCID Icon
Pages 138-156 | Received 12 Oct 2022, Accepted 10 Mar 2023, Published online: 19 Mar 2023

References

  • IUPAC. Compendium of Chemical Terminology, 2nd Ed. (The “Gold Book”); Compiled byMcNaught, A. D., Wilkinson, A.Blackwell Scientific Publications: Oxford, 1997
  • Noyori, R. Facts are the Enemy of Truth-Reflections on Serendipitous Discovery and Unforeseen Developments in Asymmetric Catalysis. Angew. Chem. Int. Ed. 2013, 52, 79–92. DOI: 10.1002/anie.201205537.
  • Zhou, Y.; Wu, S.; Zhou, H.; Huang, H.; Zhao, J.; Deng, Y.; Wang, H.; Yang, Y.; Yang, J.; Luo, L. Chiral Pharmaceuticals: Environment Sources, Potential Human Health Impacts, Remediation Technologies and Future Perspective. Environ. Int. 2018, 121, 523–537. DOI: 10.1016/j.envint.2018.09.041.
  • Tuzimski, T. Basic Principles of Planar Chromatography and Its Potential for Hyphenated Techniques. In High-Performance Thin-Layer Chromatography (HPTLC)Chapter; Srivastava, M. M., Ed.; Springer-Verlag: Berlin, 2011; Vol. 14pp. 247–310. DOI:10.1007/978-3-642-14025-9_14.
  • Sajewicz, M.; Kowalska, T. Chiral Thin-Layer Chromatography in Dynamic Studies: A Short Review. J. Planar Chromatogr. 2017, 30, 333–339. DOI: 10.1556/1006.2017.30.5.1.
  • Pasteur, L. Mémoire sur la Relation qui Peut Exister entre la Forme Cristalline et la Composition Chimique, et sur la Cause de la Polarisation Rotatoire. Mémoire et Séances Acad. 1848, 26, 535–538.
  • Pasteur, L. Mémoire sur la Fermentation Alcoolique. Mémoire et Séances Acad. 1857, 45, 1032–1036.
  • Van’t Hoff, J. H. Voorstel tot Uitbreiding der Tegenwoordige in de Scheikunde gebruikte Structuurformules in de Ruimte, benevens een daarmee samenhangende Opmerking omtrent het Verband tusschen Optisch Actief Vermogen en chemische Constitutie van Organische Verbindingen. Archives Neerlandaises des Sci. Exactes et Naturelles. 1874, 9, 445–454.
  • Kelvin, W. T. (. K. Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light. C. J. Clay and Sons, London. 1904, 619–620.
  • Mislow, K. Introduction to Stereochemistry; New York: Benjamin, 1965.
  • Cahn, R. S.; Ingold, C.; Prelog, V. Specification of Molecular Chirality. Angew. Chem. Int. Ed. 1966, 5, 385–415. DOI: 10.1002/anie.196603851.
  • Vetter, W. Current Use of Gas Chromatography and Applications. In Analytical Separation Science; Anderson, J. L., Berthod, A., Pino, V. Stalcup, A. M., Eds.; Wiley-VCH: Weinheim, 2015; Vol. 3pp. 849–882. DOI:10.1002/9783527678129.assep026.
  • Gil-Av, E.; Feibush, B.; Charles-Sigler, R. Separation of Enantiomers by Gas Liquid Chromatography with an Optically Active Stationary Phase. Tetrahedron Lett. 1966, 7, 1009–1015. DOI: 10.1016/S0040-4039(00)70231-0.
  • Contractor, S. F.; Wragg, J. Resolution of the Optical Isomers of DL-Tryptophan, 5-Hydroxy-DL-Tryptophan and 6-Hydroxy-DL-Tryptophan by Paper and Thin-Layer Chromatography. Nature. 1965, 208, 71–72. DOI: 10.1038/208071a0.
  • Yuasa, S.; Shimada, A.; Isoyama, M.; Fukuhara, T.; Itoh, M. Cellulose Conformation Responsible for Resolution of DL-Amino Acids. Chromatographia. 1986, 21, 79–82. DOI: 10.1007/BF02311680.
  • Armstrong, D. W. Pseudophase Liquid Chromatography: Applications to TLC. J. Liq. Chromatogr. 1980, 3, 895–900. DOI: 10.1080/01483918008060200.
  • Alak, A.; Armstrong, D. W. Thin-Layer Chromatographic Separation of Optical, Geometrical, and Structural Isomers. Anal. Chem. 1986, 58, 582–584. DOI: 10.1021/ac00294a020.
  • Davankov, V. A.; Rogozhin, S. V. Ligand Chromatography as a Novel Method for the Investigation of Mixed Complexes: Stereoselective Effects in α-Amino Acid Copper(ii) Complexes. J. Chromatogr. A. 1971, 60, 280–283. DOI: 10.1016/S0021-9673(00)95566-3.
  • Davankov, V. A.; Bochkov, A. S.; Belov, Y. P. Ligand-Exchange Chromatography of Racemates: XV. Resolution of α-Amino Acids on Reversed-Phase Silica Gels Coated with N-Decyl-L-Histidine. J. Chromatogr. A. 1981, 218, 547–557. DOI: 10.1016/S0021-9673(00)82079-8.
  • Davankov, V. A. Enantioselective Ligand Exchange in Modern Separation Techniques. J. Chromatogr. A. 2003, 1000, 891–915. DOI: 10.1016/s0021-9673(03)00304-2.
  • Kurganov, A. Chiral Chromatographic Separations Based on Ligand Exchange. J. Chromatogr. A. 2001, 906, 51–71. DOI: 10.1016/S0021-9673(00)00502-1.
  • Günther, K.; Martens, J.; Schickedanz, M. Thin-Layer Chromatographic Enantiomeric Resolution via Ligand Exchange. Angew. Chem. Int. Ed. Engl. 1984, 23, 506. DOI: 10.1002/anie.198405061.
  • Günther, K.; Martens, J.; Schickedanz, M. Thin-Layer Chromatographic Enantiomeric Resolution. Naturwissenschaften. 1985, 72, 149–150. DOI: 10.1007/BF00490403.
  • Günther, K.; Schickedanz, M.; Drauz, K.; Martens, J. Thin-Layer Chromatographic Enantiomeric Resolution of α-Alkyl Amino Acids, Fresenius Z. Anal. Chem. 1986, 325, 298–299. DOI: 10.1007/BF00498180.
  • Günther, K.; Martens, J.; Schickedanz, M. Resolution of Optical Isomers by Thin Layer Chromatography (TLC). Enantiomeric Purity of L-DOPA. Fresenius Z. Anal. Chem. 1985, 322, 513–514. DOI: 10.1007/BF00496224.
  • Martens, J.; Günther, K.; Schickedanz, M. Resolution of Optical Isomers by Thin-Layer Chromatography: Enantiomeric Purity of D-Penicillamine. Arch. Pharm. (Weinheim, Ger.). 1986, 319, 461–465. DOI: 10.1002/ardp.19863190515.
  • Günther, K.; Martens, J.; Schickedanz, M. Thin Layer Chromatographic Separation of Stereoisomeric Dipeptides. Angew. Chem. Int. Ed. Engl. 1986, 25, 278–279. DOI: 10.1002/anie.198602781.
  • Weinstein, S. Resolution of Optical Isomers by Thin Layer Chromatography. Tetrahedron Lett. 1984, 25, 985–986. DOI: 10.1016/S0040-4039(01)80080-0.
  • Marchelli, R.; Virgili, R.; Armani, E.; Dossena, A. Enantiomeric Separation of D,L-Dns-Amino Acids by One-And Two-Dimensional Thin-Layer Chromatography. J. Chromatogr. 1986, 355, 354–357. DOI: 10.1016/S0021-9673(01)97337-6.
  • Sinibaldi, M.; Messina, A.; Grelli, A. M. Separation of Dansylamino Acid Enantiomers by Thin-Layer Chromatography. Analyst. 1988, 113, 1245–1247. DOI: 10.1039/AN9881301245.
  • Bhushan, R.; Ali, I. TLC Resolution of Enantiomeric Mixtures of Amino Acids. Chromatographia. 1987, 23, 141–142. DOI: 10.1007/BF02312891.
  • Sheldon, R. A. Chirotechnology-Industrial Synthesis of Optically Active Compounds, Marcel Dekker: New York, 1993; pp 78–80, 188-191.
  • Lorenz, H.; Polenske, D.; Seidel-Morgenstern, A. Potential of Different Techniques of Preferential Crystallization for Enantioseparation of Racemic Compound Forming Systems. Chirality. 2020, 18, 828–840. DOI: 10.1002/chir.20327.
  • Bhushan, R.; Reddy, G. P.; Joshi, S. TLC Resolution of DL-Amino Acids on Impregnated Silica Gel Plates. J. Planar Chromatogr. 1994, 7, 126–128. ISSN 0933-4173
  • Metzger, H.; Maier, R.; Sitter, C.; Stern, H. O. 2-[N-[(S)-1-Ethoxycarbonyl-3-Phenylpropyl]-L-Alanyl]-(1S,3S,5S)-2-Azabicyclo[3.3.0]octane-3-Carboxylic Acid (Hoe 498)-A New and Highly Effective Angiotensin I Converting Enzyme Inhibitor. Arzneim.-Forsch./Drug Res. 1984, 34(II), 1402–1406.
  • Martens, J.; Lübben, S.; Bhushan, R. Synthese Eines Neuen Chiralen Selektors Für Die Dunnschichtchromatographische enantiomerentrennung nach dem ligandenaustauschprinzip. Tetrahedron Lett. 1989, 30, 7181–7182. DOI: 10.1016/S0040-4039(01)93928-0.
  • Martens, J.; Lübben, S. (1S,3S,5S)-2-Amino-3-Methoxymethyl-2-Azabicyclo [3.3.0]octan: SAMBO — Ein Neuer Chiraler Hilfsstoff. Liebigs Ann. Chem. 1990, 1990, 949–952. DOI: 10.1002/jlac.1990199001175.
  • Wallbaum, S.; Mehler, T.; Martens, J. Decarboxylation of α-Amino Acids Containing Two and Three Stereogenic Centers: A Simple One-Step Procedure to Prepare Two Optically Active β-Amino Alcohols and a Bicyclic Pyrrolidine Derivative. Synth. Commun. 1994, 24, 1381–1387. DOI: 10.1080/00397919408011741.
  • Wilken, J.; Wallbaum, S.; Saak, W.; Haase, D.; Pohl, S.; Patkar, L. N.; Dixit, A. N.; Rajappa, P.; Chittari, S.; Martens, J. Utilization of IndustRial Waste MateRials, 6. Utilization of DeRivatives of the Bicyclic PRoline Analog (all-R)-OctahydRocyclopenta[b]pyRRol-2-caRboxylic Acid in the SteReoselective Synthesis. Liebigs Ann. 1996, 1996, 927–934. DOI: 10.1002/jlac.199619960610.
  • Mehler, T.; Behnen, W.; Wilken, J.; Martens, J. Enantioselective Catalytic Reduction of Acetophenone with Borane in the Presence of Cyclic α-Amino Acids and Their Correspondimg β-Amino Alcohols. Tetrahedron Asymm. 1994, 5, 185–188. DOI: 10.1016/S0957-4166(00)86168-6.
  • Bhushan, R.; Martens, J.; Wallbaum, S.; Joshi, S.; Parshad, V. TLC Resolution of Enantiomers of Amino Acids and Dansyl Derivatives Using (1R,3R,5R)-2-Azabicyclo-[3,3,0]octan-3-Carboxylic Acid as Impregnating Reagent. Biomed. Chromatogr. 1997, (11), 286–288. DOI: 10.1002/(SICI)1099-0801(199709)11:5<286:AID-BMC698>3.0.CO;2-9.
  • Bhushan, R.; Martens, J.; Thiong’o, G. T. Direct TLC Enantioresolution of Some Basic DL-Amino Acids Using a Pharmaceutical Industry Waste as a Chiral Impregnating Reagent. J. Pharma Biomed. Anal. 2000, 21, 1143–1147. DOI: 10.1016/S0731-7085(99)00203-4.
  • Bhushan, R.; Parshad, V. Resolution of (±)-Ibuprofen Using L-Arginine Impregnated TLC. J. Chromatogr. A. 1996, 721, 369–372. DOI: 10.1016/0021-9673(95)00772-5.
  • Kondo, J.; Suzuki, N.; Naganuma, H.; Imaoka, T.; Kawasaki, T.; Nakanishi, A.; Kawahara, Y. Enantiospecific Determination of Ibuprofen in Rat Plasma Using Chiral Fluorescence Derivatization Reagent, (−)-2-[4-(1-Aminoethyl)phenyl]-6-Methoxybenzoxazole. Biomed. Chromatogr. 1994, 8, 170–174. DOI: 10.1002/bmc.1130080405.
  • Ahn, H. -Y.; Shiu, G. K.; Trafton, W. F.; Doyle, T. D. Resolution of the Enantiomers of Ibuprofen; Comparison Study of Diastereomeric Method and Chiral Stationary Phase Method. J. Chromatogr. B. 1994, 653, 163–169. DOI: 10.1016/0378-4347(93)E0425-P.
  • Bhushan, R.; Thiong’o, G. T. Direct Enantiomeric Resolution of Some 2-Arylpropionic Acids Using (−)-Brucine-Impregnated Thin-Layer Chromatography. Biomed. Chromatogr. 1999, 13, 276–278. DOI: 10.1002/(SICI)1099-0801(199906)13:4<276:AID-BMC843>3.0.CO;2-M.
  • Sajewicz, M.; Piętka, R.; Kowalska, T. Chiral Separation of (S)-(+)- and (R)-(−)-Ibuprofen by Thin-Layer Chromatography. An Improved Analytical Procedure. J. Planar Chromatogr. 2004, 17, 173–176. DOI: 10.1556/JPC.17.2004.3.3.
  • Sajewicz, M.; Piętka, R.; Kowalska, T. Chiral Separations of Ibuprofen and Propranolol by TLC. A Study of the Mechanism and Thermodynamics of Retention. J. Liq. Chromatogr. Relat. Technol. 2005, 28, 2499–2513. DOI: 10.1080/10826070500189638.
  • Sajewicz, M.; Piętka, R.; Pieniak, A.; Kowalska, T. Application of Thin-Layer Chromatography (TLC) to Investigating Oscillatory Instability of the Selected Profen Enantiomers. Acta. Chromatogr. 2005, 15, 131–149. https://www.archiwum.us.edu.pl/uniwersytet/jednostki/wydzialy/chemia/acta/ac15/tekst/spis_acta.html.
  • Sajewicz, M.; Piętka, R.; Drabik, G.; Namysło, E.; Kowalska, T. On the Stereochemically Peculiar Two-Dimensional Separation of 2-Arylpropionic Acids by Chiral TLC. J. Planar Chromatogr. 2006, 19, 273–277. DOI: 10.1556/JPC.19.2006.4.3.
  • Bhushan, R.; Thiong’o, G. T. Direct Enantioseparation of Some β-Adrenergic Blocking Agents Using Impregnated Thin-Layer Chromatography. J. Chromatogr. B. 1998, 708, 330–334. DOI: 10.1016/S0378-4347(97)00646-4.
  • Bhushan, R.; Arora, M. Direct Enantiomeric Resolution of (±)-Atenolol, (±)-Metoprolol, and (±)-Propranolol by Impregnated TLC Using L-Aspartic Acid as Chiral Selector. Biomed. Chromatogr. 2003, 17, 226–230. DOI: 10.1002/bmc.216.
  • Bhushan, R.; Agarwal, C. Direct Resolution of Six Beta Blockers into Their Enantiomers on Silica Plates Impregnated with L-Asp and L-Glu. J. Planar Chromatogr. 2008, 21, 129–134. DOI: 10.1556/jpc.21.2008.2.10.
  • Bhushan, R.; Nagar, H. Resolution and Isolation of Enantiomers of (±)-Isoxsuprine Using Thin Silica Gel Layers Impregnated with L-Glutamic Acid, Comparison of Separation of Its Diastereomers Prepared with Chiral Derivatizing Reagents Having L-Amino Acids as Chiral Auxiliaries. Biomed. Chromatogr. 2015, 29, 357–365. DOI: 10.1002/bmc.3284.
  • Nagar, H.; Martens, J.; Bhushan, R. Enantioresolution of Three Active Pharmaceutical Ingredients by Different Thin-Layer Chromatographic Approaches. J. Planar Chromatogr. 2017, 30, 350–356. DOI: 10.1556/1006.2017.30.5.3.
  • Ngim, K. K.; Zhong, Q.; Mistry, K.; Chetwyn, N. Effect of Sulfobutyl Ether Beta-Cyclodextrin Modifier on Selectivity of Reversed Phase HPLC Separations. J. Liq. Chromatogr. Rel. Technol. 2012, 35, 2845–2859. DOI: 10.1080/10826076.2011.639116.
  • Yang, G. S.; Chen, D. M.; Yang, Y.; Tang, B.; Gao, J. J.; Aboul-Enein, H. Y.; Koppenhoefer, B. Enantioseparation of Some Clinically Used Drugs by Capillary Electrophoresis Using Sulfated β-Cyclodextrin as a Chiral Selector. Chromatographia. 2005, 62, 441–445. DOI: 10.1365/s10337-005-0632-6.
  • Nikolai, L. N.; McClure, E. L.; MacLeod, S. L.; Wong, C. S. Stereoisomer Quantification of the β-Blocker Drugs Atenolol, Metoprolol, and Propranolol in Wastewaters by Chiral High-Performance Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. A. 2006, 1131, 103–109. DOI: 10.1016/j.chroma.2006.07.033.
  • Bosáková, Z.; Cuřínová, E.; Tesařová, E. Comparison of Vancomycin-Based Stationary Phases with Different Chiral Selector Coverage for Enantioselective Separation of Selected Drugs in High-Performance Liquid Chromatography. J. Chromatogr. A. 2005, 1088, 94–103. DOI: 10.1016/j.chroma.2005.01.017.
  • Lamprecht, G.; Kraushofer, T.; Stoschitzky, K.; Lindner, W. Enantioselective Analysis of (R)-And (S)-Atenolol in Urine Samples by a High-Performance Liquid Chromatography Column-Switching Setup. J. Chromatogr. B. 2000, 740, 219–226. DOI: 10.1016/S0378-4347(00)00080-3.
  • Ates, H.; Younes, A. A.; Mangelings, D.; Heyden, Y. V. Enantioselectivity of Polysaccharide-Based Chiral Selectors in Polar Organic Solvents Chromatography: Implementation of Chlorinated Selectors in a Separation Strategy. J. Pharm. Biomed. Anal. 2013, 74, 1–13. DOI: 10.1016/j.jpba.2012.09.025.
  • Peng, L.; Jayapalan, S.; Chankvetadze, B.; Farkas, T. Reversed-Phase Chiral HPLC and LC/MS Analysis with Tris (Chloromethylphenylcarbamate) Derivatives of Cellulose and Amylose as Chiral Stationary Phases. J. Chromatogr. 2010, 1217, 6942–6955. DOI: 10.1016/j.chroma.2010.08.075.
  • Chassaing, C.; Thienpont, A.; Félix, G. Regioselective Carbamoylated and Benzoylated Cellulose for the Separation of Enantiomers in High-Performance Liquid Chromatography. J. Chromatogr. A. 1996, 738, 157–167. DOI: 10.1016/0021-9673(96)00097-0.
  • Bhushan, R.; Tanwar, S. Direct TLC Resolution of Atenolol and Propranolol into Their Enantiomers Using Three Different Chiral Selectors as Impregnating Reagents. Biomed. Chromatogr. 2008, 22, 1028–1034. DOI: 10.1002/bmc.1025.
  • Bhushan, R.; Agarwal, C. Resolution of Beta Blocker Enantiomers by TLC with Vancomycin as Impregnating Agent or as Chiral Mobile Phase Additive. J. Planar Chromatogr. 2010, 23, 07–13. DOI: 10.1556/JPC.23.2010.1.1.
  • Burger, A. Medicinal Chemistry, Part II, 3rd Ed.; Wiley- Interscience: New York, 1970, p. 103, 1246.
  • Simmons, B. R.; Stewart, T. J. HPLC Separation of Selected Cardiovascular Agents on Underivatized Silica Using an Aqueous Organic Mobile Phase. J. Liq. Chromatogr. 1994, 17, 2675–2690. DOI: 10.1080/10826079408013407.
  • Huang, M. B.; Li, G. L.; Yang, G. S.; Shi, Y. H.; Gao, J. J.; Liu, X. D. Enantiomeric Separation of Aromatic Amino Alcohol Drugs by a Silica Gel Plate Chiral Ion-Pair Chromatography. J. Liq. Chromatogr. Relat. Technol. 1997, 20, 1507–1514. DOI: 10.1080/10826079708010990.
  • Lučić, B.; Radulović, D.; Vujić, Z.; Agbaba, D. Direct Separation of the Enantiomers of (±)-Metoprolol Tartrate on Impregnated TLC Plates with D-(−)-Tartaric Acid as a Chiral Selector. J. Planar Chromatogr. 2005, 18, 294–299. DOI: 10.1556/jpc.18.2005.4.8.
  • Armstrong, D. W.; Tang, Y.; Chen, S.; Zhou, Y.; Bagwill, C.; Chen, J. -R. Macrocyclic Antibiotics as a New Class of Chiral Selectors for Liquid Chromatography. Anal. Chem. 1994, 66, 1473–1484. DOI: 10.1021/ac00081a019.
  • Bhushan, R.; Parshad, V. Thin-Layer Chromatographic Separation of Enantiomeric Dansylamino Acids Using a Macrocyclic Antibiotic as a Chiral Selector. J. Chromatogr. A. 1996, 736, 235–238. DOI: 10.1016/0021-9673(95)01330-X.
  • Bhushan, R.; Thiong’o, G. T. Separation of the Enantiomers of Dansyl-DL-Amino Acids by Normal Phase TLC on Plates Impregnated with Macrocyclic Antibiotic. J. Planar Chromatogr. 2000, 13, 33–36.
  • Bhushan, R.; Agarwal, C. Direct TLC Resolution of (±)-Ketamine and (±)-Lisinopril Using (+)-Tartaric Acid and (−)-Mandelic Acid as Impregnating Reagent or as Mobile Phase Additive Along with Recovery of Enantiomers. Chromatographia. 2008, 68, 1045–1051. DOI: 10.1365/s10337-008-0856-30009-5893/08/12.
  • Armstrong, D. W.; Faulkner, J. R. J.; Han, S. M. Use of Hydroxypropyl and Hydroxyethyl-Derivatized-Cyclodextrins for the Thin-Layer Chromatographic Separation of Enantiomers and Diastereomers. J. Chromatogr. 1988, 452, 323–330. DOI: 10.1016/S0021-9673(01)81457-6.
  • Desiderio, C.; Fanali, S. Chiral Analysis by Capillary Electrophoresis Using Antibiotics as Chiral Selector. J. Chromatogr. A. 1998, 807, 37–56. DOI: 10.1016/S0021-9673(98)00061-2.
  • Kim, K.; Lee, K. Chiral Separation of Tryptophan Enantiomers by Liquid Chromatography with BSA-Silica Stationary Phase. Biotechnol. Bioprocess Eng. 2000, 5, 17–22. DOI: 10.1007/BF02932347.
  • Imre, S.; Ormenişan, A.; Tero-Vescan, A.; Muntean, D. -L.; Vari, C. -E. HPLC Enantioseparation of β-Blockers on Ovomucoid Stationary Phase. J. Chromatogr. Sci. 2016, 54, 1578–1583. 2016. DOI: 10.1093/chromsci/bmw107.
  • Malik, P.; Bhushan, R. Thin Layer Chromatographic Resolution of Some β-Adrenolytics and a β2-Agonist Using Bovine Serum Albumin as Chiral Additive in Stationary Phase. J. Chromatogr. Sci. 2018, 56, 92–98. DOI: 10.1093/chromsci/bmx082.
  • Li, W.; Ding, G. S.; Tang, A. N. Enantiomer Separation of Propranolol and Tryptophan Using Bovine Serum Albumin Functionalized Silica Nanoparticles as Adsorbents. R.S.C. Adv. 2015, 5, 93850–93857. DOI: 10.1039/C5RA17535F.
  • Aboul-Enein, H. Y.; el-Awady, M. I.; Heard, C. M. Direct Enantiomeric Resolution of Some Cardiovascular Agents Using Synthetic Polymers Imprinted with (−)-(S)-Timolol as Chiral Stationary Phase by Thin Layer Chromatography. Die. Pharmazie. 2002, 57, 169–171. PMID: 11933843
  • Geryk, R.; Kalíková, K.; Vozka, J.; Plecitá, D.; Schmid, M. G.; Tesařová, E. Enantioselective Potential of Chiral Stationary Phases Based on Immobilized Polysaccharides in Reversed Phase Mode. J. Chromatogr. A. 2014, 1363, 155–161. DOI: 10.1016/j.chroma.2014.06.040.
  • Yang, Y.; Wang, Y.; Bao, Z.; Yang, Q.; Zhiguo Zhang, Z.; Ren, Q. Progress in the Enantioseparation of β-Blockers by Chromatographic Methods. Molecules. 2021, 26, 468. DOI: 10.3390/molecules26020468.
  • Bhushan, R.; Martens, J.; Arora, M. Direct Resolution of (±)-Ephedrine and Atropine into Their Enantiomers by Impregnated TLC. Biomed. Chromatogr. 2001, 15, 151–154. DOI: 10.1002/bmc.55.
  • Bhushan, R.; Gupta, D. Thin-Layer Chromatography Separation of Enantiomers of Verapamil Using Macrocyclic Antibiotic as a Chiral Selector. Biomed. Chromatogr. 2005, 19, 474–478. DOI: 10.1002/bmc.520.
  • Suedee, R.; Teerapol, S.; Saelim, J.; Tavonpibulbut, T. TLC Separation of Chiral Drugs on Molecularly Imprinted Chiral Stationary Phases. J. Planar Chromatogr. 2001, 14, 194–198. DOI: 10.1556/JPC.14.2001.3.8.
  • Oi, N.; Kitahara, H.; Matsushita, Y.; Kisu, N. Enantiomer Separation by Gas and High-Performance Liquid Chromatography with Tripeptide Derivatives as Chiral Stationary Phases. J. Chromatogr. A. 1996, 722, 229–232. DOI: 10.1016/0021-9673(95)00665-6.
  • Han, X.; Berthod, A.; Wang, C.; Huang, K.; Armstrong, D. W. Super/Subcritical Fluid Chromatography Separations with Four Synthetic Polymeric Chiral Stationary Phases. Chromatographia. 2007, 65, 381–400. DOI: 10.1365/s10337-007-0182-1.
  • Theurillat, R.; Knobloch, M.; Schmitz, A.; Lassahn, P. -G.; Mevissen, M.; Thormann, W. Enantioselective Analysis of Ketamine and Its Metabolites in Equine Plasma and Urine by CE with Multiple Isomer Sulfated β-CD. Electrophoresis. 2007, 28, 2748–2757. DOI: 10.1002/elps.200600820.
  • Svensson, J. -O.; Gustafsson, L. L. Determination of Ketamine and Norketamine Enantiomers in Plasma by Solid-Phase Extraction and High-Performance Liquid Chromatography. J. Chromatogr. B. 1996, 678, 373–376. DOI: 10.1016/0378-4347(95)00545-5.
  • Rosas, M. E. R.; Patel, S.; Wainer, I. W. Determination of the Enantiomers of Ketamine and Norketamine in Human Plasma by Enantioselective Liquid Chromatography–Mass Spectrometry. J. Chromatogr. B. 2003, 794, 99–108. DOI: 10.1016/S1570-0232(03)00420-3.
  • Hofstetter, R. K.; Potlitz, F.; Schulig, L.; Kim, S.; Hasan, M.; Link, A. Subcritical Fluid Chromatography at Sub-Ambient Temperatures for the Chiral Resolution of Ketamine Metabolites with Rapid-Onset Antidepressant Effects, Molecules 2019, 24, 1927. DOI: 10.3390/molecules24101927.
  • Qin, X. Z.; Nguyen, D. -S.T.; Ip, D. P. Separation of Lisinopril and Its RSS Diastereoisomer by Micellar Electrokinetic Chromatography. J. Liq. Chromatogr. 1993, 16, 3713–3734. DOI: 10.1080/10826079308019663.
  • Rustichelli, C.; Ferioli, V.; Gamberini, G. Resolution of the Enantiomers of Verapamil and Gallopamil by Chiral Liquid Chromatography-Mass Spectrometry. Chromatographia. 1997, 44, 477–483. DOI: 10.1007/BF02466740.
  • Bhushan, R.; Agarwal, C. Direct Enantiomeric TLC Resolution of DL-Penicillamine Using (R)-Mandelic Acid and L-Tartaric Acid as Chiral Impregnating Reagents and as Chiral Mobile Phase Additive. Biomed. Chromatogr. 2008, 22, 1237–1242. DOI: 10.1002/bmc.1052.
  • Nagar, H.; Bhushan, R. Enantioresolution of DL-Selenomethionine by Thin Silica Gel Plates Impregnated with (−)-Quinine and Reversed-Phase TLC and HPLC of Diastereomers Prepared with Difluorodinitrobenzene Based Reagents Having L-Amino Acids as Chiral Auxiliaries. Anal. Methods. 2014, 6, 4188–4198. DOI: 10.1039/C3AY41893F.
  • Singh, D.; Malik, P.; Bhushan, R. Superiority of Thin-Layer Chromatography Over High-Performance Liquid Chromatography in Enantioseparation. J. Planar Chromatogr. 2019, 32, 7–12. DOI: 10.1556/1006.2019.32.1.1.
  • Bhushan, R.; Martens, J.; Agarwal, C.; Dixit, S. Enantioresolution of Some β-Blockers and a β2-Agonist Using Ligand Exchange TLC. J. Planar Chromatogr. 2012, 25, 463–467. DOI: 10.1556/JPC.25.2012.5.13.
  • Bhushan, R.; Brückner, H.; Kumar, V. Indirect Resolution of Enantiomers of Penicillamine by TLC and HPLC Using Marfey’s Reagent and Its Variants. Biomed. Chromatogr. 2007, 21, 1064–1068. DOI: 10.1002/bmc.854.
  • Bhushan, R.; Batra, S. Direct Enantiomeric Resolution of (±)-Bupropion Using Chiral Liquid Chromatography. J. Planar Chromatogr. 2013, 26, 491–495. DOI: 10.1556/jpc.26.2013.6.6.
  • Borges, V.; Yang, E.; Dunn, J.; Henion, J. High-Throughput Liquid Chromatography–Tandem Mass Spectrometry Determination of Bupropion and Its Metabolites in Human, Mouse and Rat Plasma Using a Monolithic Column. J. Chromatogr. B. 2004, 804, 277–287. DOI: 10.1016/j.jchromb.2004.01.024.
  • Kar, A. Pharmacognosy and Pharmacobiotechnology; New Age International (P) Limited, Publishers: New Delhi, 2003.
  • Singh, M.; Bhushan, R. Thin-Layer Chromatographic Enantioresolution of (RS)-Ketorolac Using L-Amino Acids as Chiral Additive in Stationary Phase J. Planar Chromatogr. 2019, 32, 475–479. DOI: 10.1556/1006.2019.32.6.5.
  • Malik, P.; Bhushan, R. Synthesis of Diastereomeric Anhydrides of (RS)-Ketorolac and (RS)-Etodolac, Semi-Preparative HPLC Enantioseparation, Establishment of Molecular Asymmetry and Recovery of Pure Enantiomers. New J. Chem. 2017, 41, 13681–13691. DOI: 10.1039/c7nj02898a.
  • Tsina, Y. L.; Tam, A.; Boyd, C.; Rocha, R. I.; Tarnowski, T. An Indirect (Derivatization) and a Direct HPLC Method for the Determination of the Enantiomers of Ketorolac in Plasma. J. Pharm. Biomed. Anal. 1996, 15, 403–417. DOI: 10.1016/S0731-7085(96)01856-0.
  • Ing-Lorenzini, K. R.; Desmeules, J. A.; Besson, M.; Veuthey, J. L.; Dayer, P.; Daali, Y. Two-Dimensional Liquid Chromatography–Ion Trap Mass Spectrometry for the Simultaneous Determination of Ketorolac Enantiomers and Paracetamol in Human Plasma: Application to a Pharmacokinetic Study. J. Chromatogr. A. 2009, 1216, 3851–3856. DOI: 10.1016/j.chroma.2009.02.071.
  • Vakily, M.; Corrigan, B.; Jamali, F. The Problem of Racemization in the Stereospecific Assay and Pharmacokinetic Evaluation of Ketorolac in Human and Rats. Pharm. Res. 1995, 12, 1652–1657. DOI: 10.1023/A:1016245101389.
  • Singh, M.; Bhushan, R. Enantiomeric Resolution of (±)-Etodolac by Direct Approach Using Both Achiral Phases in TLC: A Conceptual Approach. J. Planar Chromatogr. 2016, 29(3), 184–189. DOI: 10.1556/1006.2016.29.3.3.
  • Bhushan, R.; Nagar, H.; Martens, J. Resolution of Enantiomers with Both Achiral Phases in Chromatography: Conceptual Challenge. R.S.C. Adv. 2015, 5, 28316–28323. DOI: 10.1039/C5RA01496D.
  • Bhushan, R.; Gupta, D. Resolution of (±)-Ibuprofen Using (−)-Brucine as a Chiral Selector by Thin Layer Chromatography. Biomed. Chromatogr. 2004, 18, 838–840. DOI: 10.1002/bmc.398.
  • Martens, J.; Bhushan, R. Purification of Enantiomeric Mixtures in Enantioselective Synthesis: Overlooked Errors and Scientific Basis of Separation in Achiral Environment. Helv. Chim. Acta. 2014, 97, 161–187. DOI: 10.1002/hlca.201300392.
  • Martens, J.; Bhushan, R. Enantioseparations in Achiral Environments and Chromatographic Systems. Israel J. Chem. 2016, 56, 990–1009. DOI: 10.1002/ijch.201600086.
  • Bhushan, R.; Gupta, D. Ligand-Exchange TLC Resolution of Some Racemic β-Adrenergic Blocking Agents. J. Planar Chromatogr. 2006, 19, 241–245. DOI: 10.1556/jpc.19.2006.3.14.
  • Bhushan, R.; Tanwar, S. Direct TLC Resolution of the Enantiomers of Three β-Blockers by Ligand Exchange with Cu(ii)–L-Amino Acid Complex, Using Four Different Approaches. Chromatographia. 2009, 70, 1001–1006. DOI: 10.1365/s10337-009-1216-7.
  • Bhushan, R.; Tanwar, S. Different Approaches of Impregnation for Resolution of Enantiomers of Atenolol, Propranolol and Salbutamol Using Cu(ii)-L-Amino Acid Complexes for Ligand Exchange on Commercial Thin Layer Chromatographic Plates. J. Chromatogr. A. 2010, 1217, 1395–1398. DOI: 10.1016/j.chroma.2009.12.071.
  • Singh, M.; Malik, P.; Bhushan, R. Resolution of Enantiomers of (RS)-Baclofen by Ligand-Exchange Thin-Layer Chromatography. J. Chromatogr. Sci. 2016, 54, 842–846. DOI: 10.1093/chromsci/bmw014.
  • Malik, P.; Bhushan, R. Thin Layer Chromatographic Enantioresolution of (RS)-Ketorolac and (RS)-Etodolac and Recovery of Native Enantiomers. J. Chromatog. Sc. 2019, 57, 511–517. DOI: 10.1093/chromsci/bmz023.
  • Dalgliesh, C. E. The Optical Resolution of Aromatic Amino-Acids on Paper Chromatograms. J. Chem. Soc. 1952, 137, 3940–3942. DOI: 10.1039/JR9520003940.
  • Snyder, L. R. Principles of Adsorption Chromatography; Marcel Dekker, Inc.: New York, 1968.
  • Antipas, A. S.; Vander Velde, D. G.; Jois, S. D. S.; Siahaan, T.; Stella, V. J. Effect of Conformation on the Rate of Deamidation of Vancomycin in Aqueous Solutions. J. Pharm. Sci. 2000, 89, 742–750. DOI: 10.1002/(SICI)1520-6017(200006)89:6<742:AID-JPS5>3.0.CO;2-9.
  • Armstrong, D. W.; Zhou, Y. Use of a Macrocyclic Antibiotic as the Chiral Selector for Enantiomeric Separations by TLC. J. Liq. Chromatogr. 1994, 17, 1695–1707. DOI: 10.1080/10826079408013451.
  • Gasper, M. P.; Berthod, A.; Nair, U. B.; Armstrong, D. W. Comparison and Modeling Study of Vancomycin, Ristocetin A, and Teicoplanin for CE Enantioseparations. Anal. Chem. 1996, 68, 2501–2514. DOI: 10.1021/ac960154q.
  • Berthod, A. Chiral Recognition Mechanisms. Anal. Chem. 2006, 78, 2093–2099. DOI: 10.1021/ac0693823.
  • Berthod, A. Chiral Recognition Mechanisms with Macrocyclic Glycopeptide Selectors. Chirality. 2009, 21, 167–175. DOI: 10.1002/chir.20600.
  • Berthod, A.; Qiu, H. X.; Staroverov, S. M.; Kuznestov, M. A.; Armstrong, D. W. Chiral Recognition with Macrocyclic Glycopeptides: Mechanisms and Applications. In Chiral Recognition in Separation Methods: Mechanisms and Applications; Berthod, A., Ed.; Springer : Heidelberg, 2010; pp 203–222.
  • Ismail, O. H.; Antonelli, M.; Ciogli, A.; De Martino, M.; Catani, M.; Villani, C.; Cavazzini, A.; Ye, M.; Bell, D. S.; Gasparrini, F. Direct Analysis of Chiral Active Pharmaceutical Ingredients and Their Counterions by UHPLC with Macrocyclic Glycopeptide-Based Chiral Stationary Phases. J. Chromatogr. A. 2018, 1576, 42–50. DOI: 10.1016/j.chroma.2018.09.029.
  • Berthod, A.; Chen, X.; Kullman, J. P.; Armstrong, D. W.; Garparrini, F.; D’aquarica, I.; Carotti, A.; Villani, A. Role of the Carbohydrate Moieties in Teicoplanin-Based HPLC Chiral Stationary Phases. Anal. Chem. 2000, 72, 1767–1780. DOI: 10.1021/ac991004t.
  • Ilisz, I.; Pataj, Z.; Aranyi, A.; Péter, A. Macrocyclic Antibiotic Selectors in Direct HPLC Enantioseparations. Sep. Purif. Rev. 2012, 41, 207–249. DOI: 10.1080/15422119.2011.596253.
  • Su, T. J.; Lu, J. R.; Cui, Z. F.; Thomas, R. K.; Penfold, J. The Conformational Structure of Bovine Serum Albumin Layers Adsorbed at the Silica-Water Interface. J. Phys. Chem B. 1998, 102, 8100–8108. DOI: 10.1021/jp981239t.
  • Su, T. J.; Lu, J. R.; Cui, Z. F.; Thomas, R. K.; Penfold, J. Effect of pH on the Adsorption of Bovine Serum Albumin at the Silica/Water Interface Studied by Neutron Reflection. J. Phys. Chem B. 1999, 103, 3727–3736. DOI: 10.1021/jp983580j.
  • Allenmark, S.; Bomgren, B.; Borén, H. Direct Liquid Chromatographic Separation of Enantiomers on Immobilized Protein Stationary Phases: III. Optical Resolution of a Series of N-Aroyl D,L-Amino Acids by HPLC on Bovine Serum Albumin Covalently Bound to Silica. J. Chromatogr. 1983, 264, 63–68. DOI: 10.1016/S0021-9673(01)95006-X.
  • Stewart, K. K.; Doherty, R. F. Resolution of DL-Tryptophan by Affinity Chromatography on Bovine-Serum Albumin-Agarose Columns. Proc. Natl. Acad. Sci. U. S. A. 1973, 70, 2850–2852. DOI: 10.1073/pnas.70.10.2850.
  • Allenmark, S. Optical Resolution by Liquid Chromatography on Immobilized Bovine Serum Albumin. J. Liq. Chromatogr. 1986, 9, 425–442. DOI: 10.1080/01483918608076645.
  • Lepri, L.; Coas, V.; Desideri, P. G.; Zocchi, A. The Mechanism of Retention of Enantiomeric Solutes on Silanized Silica Plates Eluted with Albumin Solutions. J. Planar Chromatogr. 1994, 7, 103–107.
  • Rogozhin, S. V.; Davankov, V. A. Chromatographic Resolution of Racemates on Dissymmetric Sorbents. Russ. Chem. Rev. 1968, 37, 565–575. DOI: 10.1070/RC1968v037n07ABEH001668.
  • Rogozhin, S. V.; Davankov, V. A. Ligand Chromatography on Asymmetric Complex-Forming Sorbents as a New Method for Resolution of Racemates. J. Chem. Soc. D. 1971, 490a. DOI: 10.1039/C2971000490A.
  • Schmid, M. G.; Laffranchini, M.; Dreveny, D.; Gübitz, G. Chiral Separation of Sympathomimetics by Ligand Exchange Capillary Electrophoresis. Electrophoresis. 1999, 20, 2458–2461. DOI: 10.1002/(SICI)1522-2683(19990801)20:12<2458:AID-ELPS2458>3.0.CO;2-8.
  • Schmid, M. G.; Lecnik, O.; Sitte, U.; Gübitz, G. Application of Ligand-Exchange Capillary Electrophorersis to the Chiral Separation of α-Hydroxy Acids and β-Blockers. J. Chromatogr. A. 2000, 875, 307–314. DOI: 10.1016/S0021-9673(99)01333-3.
  • Hödl, H.; Krainer, A.; Holzmueller, K.; Koidl, J.; Schmid, M. G.; Guebitz, G. Chiral Separation of Sympathomimetics and Β-blockers by Ligand-exchange CE Using Cu(ii) Complexes of L-tartaric Acid and L-threonine as Chiral Selectors. Electrophoresis. 2007, 28, 2675–2682. DOI: 10.1002/elps.200600825.
  • Hödl, H.; Schmid, M. G.; Gübitz, G. Chiral Separation of Amino Acids and Glycyl Dipeptides by Chiral Ligand-Exchange Capillary Electrophoresis Comparing Cu(ii), Co(ii), Ni(ii) and Zn(ii) Complexes of Three Different Sugar Acids. J. Chromatogr. A. 2008, 1204, 210–218. DOI: 10.1016/j.chroma.2008.05.071.
  • Chen, Z.; Uchiyama, K.; Hobo, T. Chiral Resolution of Dansyl Amino Acids by Ligand Exchange-Capillary Electrophoresis Using Cu(ii)-L-Prolinamides as Chiral Selector. Anal. Chim. Acta. 2004, 523, 1–7. DOI: 10.1016/j.aca.2004.07.024.
  • Davankov, V. A. Chiral Selectors with Chelating Properties in Liquid Chromatography: Fundamental Reflections and Selective Review of Recent Developments. J. Chromatogr. A. 1994, 666, 55–76. DOI: 10.1016/0021-9673(94)80370-6.
  • Davankov, V. A. Separation of Enantiomeric Compounds Using Chiral HPLC Systems: A Brief Review of General Principles, Advances, and Development Trends. Chromatographia. 1989, 27, 475–482. DOI: 10.1007/BF02319569.
  • Kurganov, A. A.; Ponomaryova, T. M.; Davankov, V. A. Copper(ii) Complexes with Optically Active Diamines. V. Enantioselective Effects in Equally-Paired and Mixed-Ligand Copper(ii) Complexes with Diamines. Inorg. Chim. Acta. 1984, 86, 145–149. DOI: 10.1016/S0020-1693(00)83761-5.
  • Martens, J.; Weigel, H.; Busker, E.; Steigerwald, R. German Patent 3143726. Degussa AG, priority date: November 4, 1981, Hanau, FRG.
  • Dallavalle, F.; Folesani, G.; Marchelli, R.; Galaverna, G. Stereoselective Formation of Ternary Copper(ii) Complexes of (S)-Amino-Acid Amides and (R)- or (S)-Amino Acids in Aqueous Solution. Helv. Chim. Acta. 1994, 77, 1623–1630. DOI: 10.1002/hlca.19940770619.
  • Galaverna, G.; Corradini, R.; Dossena, A.; Chiavaro, E.; Marchelli, R.; Dallavalle, F.; Folesani, G. Chiral Discrimination of Dns- and Unmodified D,L-Amino Acids by Copper(ii) Complexes of Terdentate Ligands in High-Performance Liquid Chromatography. J. Chromatogr. A. 1998, 829, 101–113. DOI: 10.1016/S0021-9673(98)00783-3.
  • Fanali, C.; D’orazio, G.; Gentili, A.; Fanali, S. Analysis of Enantiomers in Products of Food Interest. Molecules. 2019, 24, 1119. DOI: 10.3390/molecules24061119.
  • Zhao, Y.; Zhu, X.; Jiang, W.; Liu, H.; Sun, B. Chiral Recognition for Chromatography and Membrane-Based Separations: Recent Developments and Future Prospects. Molecules. 2021, 26, 1145. DOI: 10.3390/molecules26041145.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.