1,045
Views
3
CrossRef citations to date
0
Altmetric
Review

Surface Functionalized SAPO-34 for Mixed Matrix Membranes in CO2/CH4 and CO2/N2 Separations

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 180-193 | Received 04 Jan 2023, Accepted 05 Apr 2023, Published online: 28 Apr 2023

References

  • Amaral, R. A.; Habert, A. C.; Borges, C. P. Performance Evaluation of Composite and Microporous Gas–Liquid Membrane Contactors for CO2 Removal from a Gas Mixture. Chem. Eng. Process. 2016, 102, 202–209. DOI: 10.1016/j.cep.2016.01.018.
  • Primo, A.; Garcia, H. Zeolites as Catalysts in Oil Refining. Chem. Soc. Rev. 2014, 43(22), 7548–7561. DOI: 10.1039/C3CS60394F.
  • Hölderich, W. F.; Röseler, J.; Heitmann, G.; Liebens, A. T. The Use of Zeolites in the Synthesis of Fine and Intermediate Chemicals. Chem. Eng. Process. 1997, 37(4), 353–366. DOI: 10.1016/S0920-5861(97)81094-2.
  • Zimmerman, C. M.; Singh, A.; Koros, W. J. Tailoring Mixed Matrix Composite Membranes for Gas Separations. J. Memb. Sci. 1997, 137(1–2), 145–154. DOI: 10.1016/S0376-7388(97)00194-4.
  • Davis, M. E.; Lobo, R. F. Zeolite and Molecular Sieve Synthesis. Chem. Mater. 1992, 4(4), 756–768. DOI: 10.1021/cm00022a005.
  • Chang, C. D.; Lang, W. H.; Smith, R. L. The Conversion of Methanol and Other O-Compounds to Hydrocarbons Over Zeolite Catalysts. J. Catal. 1977, 47(2), 249–259. DOI: 10.1002/chin.197918119.
  • Twaiq, F. A.; Zabidi, N. A. M.; Bhatia, S. Catalytic Conversion of Palm Oil to Hydrocarbons: Performance of Various Zeolite Catalysts. Ind. Eng. Chem. Res. 1999, 38(9), 3230–3237. DOI: 10.1021/ie980758f.
  • Tan, X.; Robijns, S.; Thür, R.; Ke, Q.; De Witte, N.; Lamaire, A.; Li, Y.; Aslam, I.; Havere, D. V.; Donckels, T., et al. Truly Combining the Advantages of Polymeric and Zeolite Membranes for Gas Separations. Science. 2022, 378(6625), 1189–1194. DOI: 10.1126/science.ade1411.
  • Sena, F. C.; De Souza, B. F.; De Almeida, N. C.; Cardoso, J. S.; Fernandes, L. D. Influence of Framework Composition Over SAPO-34 and MeAPSO-34 Acidity. Appl. Catal. A. 2011, 406(1–2), 59–62. DOI: 10.1016/j.apcata.2011.08.010.
  • Liu, G.; Tian, P.; Li, J.; Zhang, D.; Zhou, F.; Liu, Z. Synthesis, Characterization and Catalytic Properties of SAPO-34 Synthesized Using Diethylamine as a Template. Microporous. Mesoporous. Mater. 2008, 111(1–3), 143–149. DOI: 10.1016/j.micromeso.2007.07.023.
  • Liu, G.; Tian, P.; Liu, Z. Synthesis of SAPO-34 Molecular Sieves Templated with Diethylamine and Their Properties Compared with Other Templates. Chin. J. Catal. 2012, 33(1), 174–182. DOI: 10.1016/S1872-2067(10)60325-2.
  • Li, J.; Li, Z.; Han, D.; Wu, J. Facile Synthesis of SAPO-34 with Small Crystal Size for Conversion of Methanol to Olefins. Powder Technol. 2014, 262, 177–182. DOI: 10.1016/j.powtec.2014.04.082.
  • Hirota, Y.; Murata, K.; Tanaka, S.; Nishiyama, N.; Egashira, Y.; Ueyama, K. Dry Gel Conversion Synthesis of SAPO-34 Nanocrystals. Mater. Chem. Phys. 2010, 123(2–3), 507–509. DOI: 10.1016/j.matchemphys.2010.05.005.
  • Askari, S.; Halladj, R.; Sohrabi, M. An Overview of the Effects of Crystallization Time, Template and Silicon Sources on Hydrothermal Synthesis of SAPO-34 Molecular Sieve with Small Crystals. Rev. Adv. Mater. Sci. 2012, 32(2), 83–93. https://www.ipme.ru/e-journals/RAMS/no_23212/01_23212_askari.html
  • Askari, S.; Sedighi, Z.; Halladj, R. Rapid Synthesis of SAPO-34 Nanocatalyst by Dry Gel Conversion Method Templated with Morpholine: Investigating the Effects of Experimental Parameters. Microporous. Mesoporous. Mater. 2014, 197, 229–236. DOI: 10.1016/j.micromeso.2014.06.028.
  • Prakash, A. M.; Unnikrirhnan, S. Synthesis of SAPO-34: High Silicon Incorporation in the Presence of Morpholine as Template. J. Chem. Soc. Faraday Trans. 1994, 90(15), 2291–2296. DOI: 10.1039/FT9949002291.
  • Sun, Q.; Wang, N.; Guo, G.; Yu, J. Ultrafast Synthesis of Nano-Sized Zeolite SAPO-34 with Excellent MTO Catalytic Performance. Chem. Commun. 2015, 51(91), 16397–16400. DOI: 10.1039/c5cc07343j.
  • Gao, B.; Yang, M.; Qiao, Y.; Li, J.; Xiang, X.; Wu, P.; Wei, Y.; Xu, S.; Tian, P.; Liu, Z. A Low-Temperature Approach to Synthesize Low-Silica SAPO-34 Nanocrystals and Their Application in the Methanol-To-Olefins (MTO) Reaction. Catal. Sci. Technol. 2016, 6(20), 7569–7578. DOI: 10.1039/c6cy01461e.
  • Zhong, J.; Han, J.; Wei, Y.; Tian, P.; Guo, X.; Song, C.; Liu, Z. Recent Advances of the Nano-Hierarchical SAPO-34 in the Methanol-To-Olefin (MTO) Reaction and Other Applications. Catal. Sci. Technol. 2017, 7(21), 4905–4923. DOI: 10.1039/c7cy01466j.
  • Luna, F. J.; Schuchardt, U. Modificação de zeólitas para uso em catálise. Quim. Nova. 2001, 24(6), 885–892. DOI: 10.1590/S0100-40422001000600027.
  • Li, S.; Falconer, J. L.; Noble, R. D. Improved SAPO-34 Membranes for CO2/CH4 Separations. Adv. Mater. 2006, 18(19), 2601–2603. DOI: 10.1002/adma.200601147.
  • Usman, M. Recent Progress of SAPO-34 Zeolite Membranes for CO2 Separation: A Review. Membranes. 2022, 12(5), 507. DOI: 10.3390/membranes12050507.
  • Salmasi, M.; Fatemi, S.; Hashemi, S. J. MTO Reaction Over SAPO-34 Catalysts Synthesized by Combination of TEAOH and Morpholine Templates and Different Silica Sources. Sci. Iran. 2012, 19(6), 1632–1637. DOI: 10.1016/j.scient.2012.04.019.
  • Rimaz, S.; Kosari, M.; Zarinejad, M.; Ramakrishna, S. A Comprehensive Review on Sustainability-Motivated Applications of SAPO-34 Molecular Sieve. J. Mater. Sci. 2022, 57(2), 848–886. DOI: 10.1007/s10853-021-06643-1.
  • Pacheco, M. J.; Vences, L. J.; Moreno, H.; Pacheco, J. O.; Valdivia, R.; Hernández, C. Review: Mixed-Matrix Membranes with CNT for CO2 Separation Processes. Membranes. 2021, 11(6), 457. DOI: 10.3390/membranes11060457.
  • Sun, Q.; Xie, Z.; Yu, J. The State-Of-The-Art Synthetic Strategies for SAPO-34 Zeolite Catalysts in Methanol-To-Olefin Conversion. Natl. Sci. Rev. 2018, 5(4), 542–558. DOI: 10.1093/nsr/nwx103.
  • Xu, J.; Haw, K. G.; Li, Z.; Pati, S.; Wang, Z.; Kawi, S. A Mini-Review on Recent Developments in SAPO-34 Zeolite Membranes and Membrane Reactors. Reaction Chem. Eng. 2021, 6(1), 52–66. DOI: 10.1039/d0re00349b.
  • Makertihartha, I. G. B. N.; Kencana, K. S.; Dwiputra, T. R.; Khoiruddin, K.; Lugito, G.; Mukti, R. R.; Wenten, I. G. SAPO-34 Zeotype Membrane for Gas Sweetening. Rev. Chem. Eng, De Gruyter Open Ltd. 2020. DOI: 10.1515/revce-2019-0086.
  • Yang, H.; Xu, Z.; Fan, M.; Gupta, R.; Slimane, R. B.; Bland, A. E.; Wright, I. Progress in Carbon Dioxide Separation and Capture: A Review. J. Environ. Sci. 2008, 20(1), 14–27. DOI: 10.1016/S1001-0742(08)60002-9.
  • Bernardo, P.; Drioli, E.; Golemme, G. Membrane Gas Separation: A Review/State of the Art. Ind. Eng. Chem. Res. 2009, 48, 4638–4663. DOI: 10.1021/ie8019032.
  • Khalilpour, R.; Mumford, K.; Zhai, H.; Abbas, A.; Stevens, G.; Rubin, E. S. Membrane-Based Carbon Capture from Flue Gas: A Review. J. Clean. Prod. 2015, 103, 286–300. DOI: 10.1016/j.jclepro.2014.10.050.
  • Ismail, A. F.; David, L. I. B. A Review on the Latest Development of Carbon Membranes for Gas Separation. J. Memb. Sci. 2001, 193(1), 1–18. DOI: 10.1016/S0376-7388(01)00510-5.
  • Aroon, M. A.; Ismail, A. F.; Matsuura, T.; Montazer-Rahmati, M. M. Performance Studies of Mixed Matrix Membranes for Gas Separation: A Review. Sep. Purif. Technol. 2010, 75(3), 229–242. DOI: 10.1016/j.seppur.2010.08.023.
  • Zhang, Y.; Sunarso, J.; Liu, S.; Wang, R. Current Status and Development of Membranes for CO2/CH4 Separation: A Review. Int. J. Greenhouse Gas Control. 2013, 12, 84–107. DOI: 10.1016/j.ijggc.2012.10.009.
  • Vinoba, M.; Bhagiyalakshmi, M.; Alqaheem, Y.; Alomair, A. A.; Pérez, A.; Rana, M. S. Recent Progress of Fillers in Mixed Matrix Membranes for CO2 Separation: A Review. Sep. Purif. Technol. 2017, 188, 431–450. DOI: 10.1016/j.seppur.2017.07.051.
  • Ahmad, N. N. R.; Leo, C. P.; Mohammad, A. W.; Shaari, N.; Ang, W. L. Recent Progress in the Development of Ionic Liquid-Based Mixed Matrix Membrane for CO2 Separation: A Review. Int. J. Energy Res. 2021, 45(7), 9800–9830. DOI: 10.1002/er.6518.
  • Zhang, Y.; Ren, Z.; Wang, Y.; Deng, Y.; Li, J. Synthesis of Small-Sized SAPO-34 Crystals with Varying Template Combinations for the Conversion of Methanol to Olefin. Catalysts. 2018, 8(12), 570. DOI: 10.3390/catal8120570.
  • Najafi, N.; Askari, S.; Halladj, R. Hydrothermal Synthesis of Nanosized SAPO-34 Molecular Sieves by Different Combinations of Multi Templates. Powder Technol. 2014, 254, 324–330. DOI: 10.1016/j.powtec.2014.01.037.
  • Li, M.; Wang, Y.; Bai, L.; Chang, N.; Nan, G.; Hu, D.; Zhang, Y.; Wei, W. Solvent-Free Synthesis of SAPO-34 Nanocrystals with Reduced Template Consumption for Methanol-To-Olefins Process. Appl. Catal. A. 2017, 531, 203–211. DOI: 10.1016/j.apcata.2016.11.005.
  • Li, Z.; Martínez-Triguero, J.; Yu, J.; Corma, A. Conversion of Methanol to Olefins: Stabilization of Nanosized SAPO-34 by Hydrothermal Treatment. J. Catal. 2015, 329, 379–388. DOI: 10.1016/j.jcat.2015.05.025.
  • Ye, L.; Cao, F.; Ying, W.; Fang, D.; Sun, Q. Methanol Conversion on SAPO-34 Catalysts Synthesized by Tri-Templates. Mater. Res. Soc. Symp. Proc. 2010, 1279, 205–213. DOI: 10.1557/proc-1279-22.
  • Lee, Y. J.; Baek, S. C.; Jun, K. W. Methanol Conversion on SAPO-34 Catalysts Prepared by Mixed Template Method. Appl. Catal. A. 2007, 329, 130–136. DOI: 10.1016/j.apcata.2007.06.034.
  • Chae, H. J.; Park, I. J.; Song, Y. H.; Jeong, K. E.; Kim, C. U.; Shin, C. H.; Jeong, S. Y. Physicochemical Characteristics of SAPO-34 Molecular Sieves Synthesized with Mixed Templates as MTO Catalysts. J. Nanosci. Nanotechnol. 2010, 10(1), 195–202. DOI: 10.1166/jnn.2010.1487.
  • Li, M.; Zhang, J.; Liu, X.; Wang, Y.; Liu, C.; Hu, D.; Zeng, G.; Zhang, Y.; Wei, W.; Sun, Y. Synthesis of High Performance SAPO-34 Zeolite Membrane by a Novel Two-Step Hydrothermal Synthesis + Dry Gel Conversion Method. Microporous. Mesoporous. Mater. 2016, 225, 261–271. DOI: 10.1016/j.micromeso.2015.11.056.
  • Bing, L.; Wang, G.; Wang, F.; Liu, X.; Zhang, B. Preparation of a Preferentially Oriented SAPO-34 Membrane by Secondary Growth Under Microwave Irradiation. R.S.C. Adv. 2016, 6(61), 56170–56173. DOI: 10.1039/c6ra09018d.
  • Zong, Z.; Carreon, M. A. Thin SAPO-34 Membranes Synthesized in Stainless Steel Autoclaves for N2/CH4 Separation. J. Memb. Sci. 2017, 524, 117–123. DOI: 10.1016/j.memsci.2016.11.011.
  • Venna, S. R.; Carreon, M. A. Synthesis of SAPO-34 Crystals in the Presence of Crystal Growth Inhibitors. J. Phys. Chem B. 2008, 112(51), 16261–16265. DOI: 10.1021/jp809316s.
  • Shi, H. Synthesis of SAPO-34 Zeolite Membranes with the Aid of Crystal Growth Inhibitors for CO2/CH4 Separation. New. J. Chem. 2014, 38(11), 5276–5278. DOI: 10.1039/c4nj01405g.
  • Chen, X.; Vicente, A.; Qin, Z.; Ruaux, V.; Gilson, J. P.; Valtchev, V. The Preparation of Hierarchical SAPO-34 Crystals via Post-Synthesis Fluoride Etching. Chem. Commun. 2016, 52(17), 3512–3515. DOI: 10.1039/c5cc09498d.
  • Yang, G.; Han, J.; Huang, Y.; Chen, X.; Valtchev, V. Busting the Efficiency of SAPO-34 Catalysts for the Methanol-To-Olefin Conversion by Post-Synthesis Methods. Chin. J. Chem. Eng. 2020, 28(8), 2022–2027. DOI: 10.1016/j.cjche.2020.05.028.
  • Liu, G.; Tian, P.; Xia, Q.; Liu, Z. An Effective Route to Improve the Catalytic Performance of SAPO-34 in the Methanol-To-Olefin Reaction. J. Nat. Gas. Chem. 2012, 21(4), 431–434. DOI: 10.1016/S1003-9953(11)60387-3.
  • Zheng, T.; Liu, H.; He, P.; Zhang, R.; Meng, X.; Xu, C.; Liu, H.; Yue, Y.; Liu, Z. Post Synthesis of Hierarchical SAPO-34 via Citric Acid Etching: Mechanism of Selective Desilication. Microporous. Mesoporous. Mater. 2022, 335, 111798. DOI: 10.1016/j.micromeso.2022.111798.
  • Jadav, D.; Bandyopadhyay, R.; Bandyopadhyay, M. Synthesis of Hierarchical SAPO-5 & SAPO-34 Materials by Post-Synthetic Alkali Treatment and Their Enhanced Catalytic Activity in Transesterification. Eur. J. Inorg. Chem. 2020, 2020(10), 847–853. DOI: 10.1002/ejic.201901250.
  • Shen, B.; Chen, X.; Fan, X.; Xiong, H.; Wang, H.; Qian, W.; Wang, Y.; We, F. Resolving Atomic SAPO-34/18 Intergrowth Architectures for Methanol Conversion by Identifying Light Atoms and Bonds. Nat. Commun. 2021, 12(1), 2212. DOI: 10.1038/s41467-021-22438-z.
  • Doan, T.; Nguyen, K.; Dam, P.; Vuong, T. H.; Le, M. T.; Thanh, H. P. Synthesis of SAPO-34 Using Different Combinations of Organic Structure-Directing Agents. J. Chem. 2019, 2019, 6197527. DOI: 10.1155/2019/6197527.
  • Gao, F.; Walter, E. D.; Washton, N. M.; Szanyi, J.; Peden, C. H. Synthesis and Evaluation of Cu/SAPO-34 Catalysts for NH 3-SCR 2: Solid-State Ion Exchange and One-Pot Synthesis. Appl. Catal. B. 2014, 162, 501–514. DOI: 10.1016/j.apcatb.2014.07.029.
  • Wu, Z.; Ran, R.; Ma, Y.; Wu, X.; Si, Z.; Weng, D. Quantitative Control and Identification of Copper Species in Cu–SAPO-34: A Combined UV–Vis Spectroscopic and H2 -TPR Analysis. Res. Chem. Inter. 2019, 45(3), 1309–1325. DOI: 10.1007/s11164-018-3680-x.
  • Chen, H.; Wang, M.; Yang, M.; Shang, W.; Yang, C.; Liu, B.; Hao, Q.; Zhang, J.; Ma, X. Organosilane Surfactant-Directed Synthesis of Nanosheet-Assembled SAPO-34 Zeolites with Improved MTO Catalytic Performance. J. Mater. Sci. 2018, 54(11), 8202–8215. DOI: 10.1007/s10853-019-03485-w.
  • Li, G.; Wang, B.; Sun, Q.; Xu, W. Q.; Ma, Z.; Wang, H.; Zhang, D.; Zhou, J. Novel Synthesis of Fly-Ash-Derived Cu-Loaded SAPO-34 Catalysts and Their Use in Selective Catalytic Reduction of NO with NH3. Green Energy Environ. 2019, 4, 470–482. DOI: 10.1016/j.gee.2019.03.003.
  • Shamanaev, I. V.; Deliy, I. V.; Gerasimov, E. Y.; Pakharukova, V. P.; Kodenev, E. G.; Aleksandrov, P. V.; Bukhtiyarova, G. A. Synergetic Effect of Ni2P/SiO2 and γ-Al2O3 Physical Mixture in Hydrodeoxygenation of Methyl Palmitate. Catalysts. 2017, 7(11), 329. DOI: 10.3390/catal7110329.
  • Freeman, B. D. Basis of Permeability/Selectivity Trade-Off Relations in Polymeric Gas Separation Membranes. Macromolecules. 1999, 32(2), 375–380. DOI: 10.1021/ma9814548.
  • Robeson, L. M. Correlation of Separation Factor versus Permeability for Polymeric Membranes. J. Memb. Sci. 1991, 62, 165–185. DOI: 10.1016/0376-7388(91)80060-J.
  • Robeson, L. M. The Upper Bound Revisited. J. Memb. Sci. 2008, 320(1–2), 390–400. DOI: 10.1016/j.memsci.2008.04.030.
  • Zhao, D.; Ren, J.; Li, H.; Hua, K.; Deng, M. Poly(amide-6-B-Ethylene Oxide)/SAPO-34 Mixed Matrix Membrane for CO2 Separation. J. Energy Chem. 2014, 23(2), 227–234. DOI: 10.1016/S2095-4956(14)60140-6.
  • Hudiono, Y. C.; Carlisle, T. K.; Bara, J. E.; Zhang, Y.; Gin, D. L.; Noble, R. D. A Three-Component Mixed-Matrix Membrane with Enhanced CO2 Separation Properties Based on Zeolites and Ionic Liquid Materials. J. Memb. Sci. 2010, 350(1–2), 117–123. DOI: 10.1016/j.memsci.2009.12.018.
  • Hudiono, Y. C.; Carlisle, T. K.; LaFrate, A. L.; Gin, D. L.; Noble, R. D. Novel Mixed Matrix Membranes Based on Polymerizable Room-Temperature Ionic Liquids and SAPO-34 Particles to Improve CO2 Separation. J. Memb. Sci. 2011, 370(1–2), 141–148. DOI: 10.1016/j.memsci.2011.01.012.
  • Hu, L.; Cheng, J.; Li, Y.; Liu, J.; Zhang, L.; Zhou, J.; Cen, K. Composites of Ionic Liquid and Amine-Modified SAPO 34 Improve CO2 Separation of CO2-selective Polymer Membranes. Appl. Surf. Sci. 2017, 410, 249–258. DOI: 10.1016/j.apsusc.2017.03.045.
  • Comesaña-Gándara, B.; Chen, J.; Bezzu, C. G.; Carta, M.; Rose, I.; Ferrari, M. C.; Esposito, E.; Fuoco, A.; Jansen, J. C.; McKeown, N. B. Redefining the Robeson Upper Bounds for CO2/CH4 and CO2/N2 Separations Using a Series of Ultra Permeable Benzotriptycene-Based Polymers of Intrinsic Microporosity. Energy Environ. Sci. 2019, 12(9), 2733–2740. DOI: 10.1039/c9ee01384a.
  • Peydayesh, M.; Asarehpour, S.; Mohammadi, T.; Bakhtiari, O. Preparation and Characterization of SAPO-34 - Matrimid® Mixed Matrix Membranes for CO2/CH4 Separation. Chem. Eng. Res. Des. 2013, 91(7), 1335–1342. DOI: 10.1016/j.cherd.2013.01.022.
  • Junaidi, M. U. M.; Leo, C. P.; Ahmad, A. L.; Ahmad, N. A. Fluorocarbon Functionalized SAPO-34 Zeolite Incorporated in Asymmetric Mixed Matrix Membranes for Carbon Dioxide Separation in Wet Gases. Microporous. Mesoporous. Mater. 2015, 206, 23–33. DOI: 10.1016/j.micromeso.2014.12.013.
  • Junaidi, M. U. M.; Khoo, C. P.; Leo, C. P.; Ahmad, A. L. The Effects of Solvents on the Modification of SAPO-34 Zeolite Using 3-Aminopropyl Trimethoxy Silane for the Preparation of Asymmetric Polysulfone Mixed Matrix Membrane in the Application of CO2 Separation. Microporous. Mesoporous. Mater. 2014, 192, 52–59. DOI: 10.1016/j.micromeso.2013.10.006.
  • Ahmad, N. A.; Noh, A. N. M.; Leo, C. P.; Ahmad, A. L. CO2 Removal Using Membrane Gas Absorption with PVDF Membrane Incorporated with POSS and SAPO-34 Zeolite. Chem. Eng. Res. Des. 2017, 118, 238–247. DOI: 10.1016/j.cherd.2016.12.019.
  • Fakult, D. T.; Hussain, M. Mixed Matrix Membranes for Gas Separation (Mixed-Matrix-Membranen Zur Gastrennung) Als Dissertation genehmigt von der Technischen Fakultät der Universität Erlangen-Nürnberg; Universität Erlangen-Nürnberg: Erlangen, 2013.
  • Nasir, R.; Ahmad, N. N. R.; Mukhtar, H.; Mohshim, D. F. Effect of Ionic Liquid Inclusion and Amino-Functionalized SAPO-34 on the Performance of Mixed Matrix Membranes for CO2/CH4 Separation. J. Environ. Chem. Eng. 2018, 6(2), 2363–2368. DOI: 10.1016/j.jece.2018.03.032.
  • Ahmad, N. N. R.; Mukhtar, H.; Mohshim, D. F.; Nasir, R.; Man, Z. Effect of Different Organic Amino Cations on SAPO-34 for PES/SAPO-34 Mixed Matrix Membranes Toward CO2/CH4 Separation. J. Appl. Polym. Sci. 2016, 133(18), 1–6. DOI: 10.1002/app.43387.
  • Li, S.; Carreon, M. A.; Zhang, Y.; Funke, H. H.; Noble, R. D.; Falconer, J. L. Scale-Up of SAPO-34 Membranes for CO2/CH4 Separation. J. Memb. Sci. 2010, 352(1–2), 7–13. DOI: 10.1016/j.memsci.2010.01.037.
  • Miao, S.; Xiong, Z.; Zhang, J.; Wu, Y.; Gong, X. Polydopamine/SiO2 Hybrid Structured Superamphiphobic Fabrics with Good Photothermal Behavior. Langmuir. 2022, 38(30), 9431–9440. DOI: 10.1021/acs.langmuir.2c01629.
  • Han, X.; Gong, X. In Situ, One-Pot Method to Prepare Robust Superamphiphobic Cotton Fabrics for High Buoyancy and Good Antifouling. ACS Appl. Mater. Interfaces. 2021, 13(26), 31298–31309. DOI: 10.1021/acsami.1c08844.
  • Rezaei-DashtArzhandi, M.; Ismail, A. F.; Goh, P. S.; Wan Azelee, I.; Abbasgholipourghadim, M.; Rehman, G. U.; Matsuura, T. Zeolite ZSM5-Filled PVDF Hollow Fiber Mixed Matrix Membranes for Efficient Carbon Dioxide Removal via Membrane Contactor. Ind. Eng. Chem. Res. 2016, 55, 12632–12643. DOI: 10.1021/acs.iecr.6b03117.
  • Rezaeia, M.; Ismai, A. F.; Hashemifard, S. A.; Bakeric, G.; Matsuura, T. Experimental Study on the Performance and Long-Term Stability of PVDF/Montmorillonite Hollow Fiber Mixed Matrix Membranes for CO2 Separation Process. Int. J. Greenhouse Gas Control. 2014, 26, 147–157. DOI: 10.1016/j.ijggc.2014.04.021.
  • Kumar, P.; Kim, S.; Ida, J.; Guliants, V. V. Comments on the Origins of N2/CO2 Selectivity of Gas Separation Membranes. Ind. Eng. Chem. Res. 2009, 48, 3702. DOI: 10.1021/ie9001487.
  • Hu, L.; Zhou, J.; Li, Y.; Cheng, J.; Cen, K.; Liu, J. CO2 Absorption and Diffusion in Ionic Liquid [P66614][Triz] Modified Molecular Sieves SBA-15 with Various Pore Lengths. Fuel Processing Technol. 2017, 172, 216–224. DOI: 10.1016/j.fuproc.2017.12.022.
  • Asghari, M.; Dashti, A.; Rezakazemi, M.; Raji, M.; Sodeifian, G. Polyurethane-SAPO-34 Mixed Matrix Membrane for CO2/CH4 and CO2/N2 Separation. Chin. J. Chem. Eng. 2018, 27, 322–334. DOI: 10.1016/j.cjche.2018.03.012.
  • Huang, Y.; Zong, Z.; Zhou, S. J.; Huang, Y.; Song, Z.; Feng, X.; Zhou, R.; Meyer, H. S.; Yu, M.; Carreon, M. A. SAPO-34 Membranes for N2/CH4 Separation: Preparation, Characterization, Separation Performance and Economic Evaluation. J. Memb. Sci. 2015, 487, 141–151. DOI: 10.1016/j.memsci.2015.03.078.
  • Rabiee, H.; Ghadimi, A.; Mohammadi, T. Gas Transport Properties of Reverse-Selective poly(ether-b-amide6)/[Emim][BF4] Gel Membranes for CO2/light Gases Separation. J. Memb. Sci. 2015, 476, 286–302. DOI: 10.1016/j.memsci.2014.11.037.
  • Ahmad, N. N. R.; Leo, C. P.; Mohammad, A. W.; Ahmad, A. L. Interfacial Sealing and Functionalization of Polysulfone/SAPO-34 Mixed Matrix Membrane Using Acetate-Based Ionic Liquid in Post-Impregnation for CO2 Capture. Sep. Purif. Technol. 2018, 197, 439–448. DOI: 10.1016/j.seppur.2017.12.054.
  • Venna, S. R.; Carreon, M. A. Amino-Functionalized SAPO-34 Membranes for CO2/CH4 and CO2/N2 Separation. Langmuir. 2011, 27, 2888–2894. DOI: 10.1021/la105037n.
  • Ahmad, N. N. R.; Mukhtar, H.; Man, Z.; Mohshim, D. F. Synthesis and Characterization of EDA-Functionalized Polyethersulfone/SAPO-34 Mixed Matrix Membrane. ARPN J. Eng. Appl. Sci. 2015, 10(15), 6192–6195. http://scholars.utp.edu.my/id/eprint/22064
  • Cai, W.; Xie, J.; Luo, J.; Chen, X.; Wang, M.; Wang, Y.; Li, J. N-Octyltrichlorosilane Modified SAPO-34/PDMS Mixed Matrix Membranes for Propane/Nitrogen Mixture Separation. Separat. 2022, 9(3), 64. DOI: 10.3390/separations9030064.
  • Mees, F. D. P.; Voort, P. V. D.; Cool, P.; Martens, L. R. M.; Janssen, M. J. G.; Verberckmoes, A. A.; Kennedy, G. J.; Hall, R. B.; Wang, K.; Vansant, E. F. Controlled Reduction of the Acid Site Density of SAPO-34 Molecular Sieve by Means of Silanation and Disilanation. J. Phys. Chem B. 2003, 107(14), 3161–3167. DOI: 10.1021/jp0276045.
  • Ahmad, N. A.; Leo, C. P.; Junaidi, M. U. M.; Ahmad, A. L. PVDF/PBI Membrane Incorporated with SAPO-34 Zeolite for Membrane Gas Absorption. J. Taiwan Inst. Chem. Eng. 2016, 63, 143–150. DOI: 10.1016/j.jtice.2016.02.023.
  • Zhao, X.; Liu, W.; Liu, X.; Zhang, B. Mixed Matrix Membranes Incorporated with Aminosilane-Functionalized SAPO-34 for Upgrading CO2/CH4 Separation Performances. Ind. Eng. Chem. Res. 2021, 60(38), 13927–13937. DOI: 10.1021/acs.iecr.1c01522.
  • Mu, Y.; Chen, H.; Xiang, H.; Lan, L.; Shao, Y.; Fan, X.; Hardacre, C. Defects-Healing of SAPO-34 Membrane by Post-Synthesis Modification Using Organosilica for Selective CO2 Separation. J. Memb. Sci. 2019, 575, 80–88. DOI: 10.1016/j.memsci.2019.01.004.
  • Ismail, A. F.; Kusworo, T. D.; Mustafa, A. Enhanced Gas Permeation Performance of Polyethersulfone Mixed Matrix Hollow Fiber Membranes Using Novel Dynasylan Ameo Silane Agent. J. Memb. Sci. 2008, 319(1–2), 306–312. DOI: 10.1016/j.memsci.2008.03.067.
  • Rogers, R. D.; Seddon, K. R. Ionic Liquids - Solvents of the Future? Science. 2003, 302(5646), 792–793. DOI: 10.1126/science.1090313.
  • Holbrey, J. D.; Seddon, K. R. Ionic Liquids. In Clean Products and Processes, Springer-Verlag, 1999; Vol. 1, pp. 223–236. http://www.ch.qub.ac.uk/staff/personal/krs
  • Wikes, J. S.; Wassescheid, P.; Welton, T. Ionic Liquids in Synthesis; Weinheim: WILEY-VCH Verlags GmbH & Co, 2008; Vol. 2, pp. 1–2, 3-527-60070-1.
  • Forsyth, S. A.; Pringle, J. M.; MacFarlane, D. R. Ionic Liquids - an Overview. Aust. J. Chem. 2004, 57(2), 113–119. DOI: 10.1071/CH03231.
  • Wilkes, J. S.; Wasserscheid, P.; Welton, T. Ionic Liquids in Synthesis, 2nd. Ed; Wiley-VCH: Weinheim, 2007; Vol. 1, pp. 1–6. DOI: 10.1002/9783527621194.ch1.
  • Ahmad, N. N. R.; Leo, C. P.; Mohammad, A. W.; Ahmad, A. L. Modification of Gas Selective SAPO Zeolites Using Imidazolium Ionic Liquid to Develop Polysulfone Mixed Matrix Membrane for CO2 Gas Separation. Microporous. Mesoporous. Mater. 2017, 244, 21–30. DOI: 10.1016/j.micromeso.2016.10.001.
  • Cheng, J.; Li, Y.; Hu, L.; Zhou, J.; Cen, K. CO2 Adsorption Performance of Ionic Liquid [P66614][2-Op] Loaded Onto Molecular Sieve MCM-41 Compared to Pure Ionic Liquid in Biohythane/Pure CO2 Atmospheres. Energy Fuels. 2016, 30(4), 3251–3256. DOI: 10.1021/acs.energyfuels.5b02857.
  • Mohshim, D. F.; Mukhtar, H.; Man, Z. Ionic Liquid Polymeric Membrane: Synthesis, Characterization & Performance Evaluation. Key Eng. Mater. 2014, 594–595, 18–23. DOI: 10.4028/0000www.scientific.net/KEM.594-595.18.
  • Mohshim, D. F.; Mukhtar, H.; Man, Z. The Effect of Incorporating Ionic Liquid into Polyethersulfone-SAPO34 Based Mixed Matrix Membrane on CO2 Gas Separation Performance. Sep. Purif. Technol. 2014, 135, 252–258. DOI: 10.1016/j.seppur.2014.08.019.
  • Ilyas, A.; Muhammad, N.; Gilani, M. A.; Vankelecom, I. F. J.; Khan, A. L. Effect of Zeolite Surface Modification with Ionic Liquid [Aptms][ac] on Gas Separation Performance of Mixed Matrix Membranes. Sep. Purif. Technol. 2018, 205, 176–183. DOI: 10.1016/j.seppur.2018.05.040.
  • Wu, T.; Liu, Y.; Kumakiri, I.; Tanaka, K.; Chen, X.; Kita, H. Preparation and Permeation Properties of PeSu-Based Mixed Matrix Membranes with Nano-Sized CHA Zeolites. J. Chem. Eng. Japan. 2019, 52(6), 514–520. DOI: 10.1252/jcej.18we241.
  • Cakal, U.; Yilmaz, L.; Kalipcilar, H. Effect of Feed Gas Composition on the Separation of CO2/CH4 Mixtures by PES-SAPO 34-HMA Mixed Matrix Membranes. J. Memb. Sci. 2012, 417–418, 45–5. DOI:10.1016/j.memsci.2012.06.011.
  • Oral, E. E.; Yilmaz, L.; Kalipcilar, H. Effect of Gas Permeation Temperature and Annealing Procedure on the Performance of Binary and Ternary Mixed Matrix Membranes of Polyethersulfone, SAPO-34, and 2-Hydroxy 5-Methyl Aniline. J. Appl. Polym. Sci. 2014, 131(17), 8498–8505. DOI: 10.1002/app.40679.
  • Carter, D.; Tezel, F. H.; Kruczek, B.; Kalipcilar, H. Investigation and Comparison of Mixed Matrix Membranes Composed of Polyimide Matrimid with ZIF – 8, Silicalite, and SAPO-34. J. Memb. Sci. 2017, 544, 35–46. DOI: 10.1016/j.memsci.2017.08.068.
  • Junaidi, M. U. M.; Leo, C. P.; Ahmad, A. L.; Kamal, S. N. M.; Chew, T. L. Carbon Dioxide Separation Using Asymmetric Polysulfone Mixed Matrix Membranes Incorporated with SAPO-34 Zeolite. Fuel Process. Technol. 2014, 118, 125–132. DOI: 10.1016/j.fuproc.2013.08.009.
  • Mohshim, D. F.; Mukhtar, H.; Dutta, B. K.; Man, Z. Predicting CO2 Permeation Through an Enhanced Ionic Liquid Mixed Matrix Membrane (IL3M). Int. J. Chem. Eng. 2019, 9525783, 10. DOI: 10.1155/2019/9525783.
  • Santaniello, A.; Di Renzo, A.; Maio, F. D.; Belov, N. A.; Yampolskii, Y. P.; Golemme, G. Competing Non Ideal Behaviour of SAPO-34 and Poly(hexafluoropropylene) in Mixed Matrix Membranes. Microporous. Mesoporous. Mater. 2020, 303. DOI: 10.1016/j.micromeso.2020.110241.
  • Liu, Y.; Takata, K.; Kita, H.; Tanaka, K. Investigation of Gas Diffusivity and Solubility of PES Based Mixed Matrix Membranes Using Commercial SAPO-34 Zeolite. Trans. Mat. Res. Soc. Jpn. 2021, 46(1), 39–43. DOI: 10.14723/tmrsj.46.39.
  • Wu, T.; Shi, Y.; Liu, Y.; Kumakiri, I.; Tanaka, K.; Chen, X.; Kita, H. Improved Gas Permeation Properties of 6FDA-Trmpd Mixed-Matrix Membrane with SAPO-34 Crystals Toward CO2 Separation. Energy Fuels. 2021, 35(13), 10680–10688. DOI: 10.1021/acs.energyfuels.1c00925.
  • Estahbanati, E. G.; Omidkhah, M.; Amooghin, A. E. Preparation and Characterization of Novel Ionic Liquid/Pebax Membranes for Efficient CO2/light Gases Separation. J. Ind. Eng. Chem. 2017, 51, 77–89. DOI: 10.1016/j.jiec.2017.02.017.
  • Lu, S. C.; Khan, A. L.; Vankelecom, I. F. J. Polysulfone-Ionic Liquid-Based Membranes for CO2/N2 Separation with Tunable Porous Surface Features. J. Memb. Sci. 2016, 518, 10–20. DOI: 10.1016/j.memsci.2016.06.031.
  • Huang, G.; Isfahani, A. P.; Muchtar, A.; Sakurai, K.; Shrestha, B. B.; Qin, D.; Yamaguchi, D.; Sivaniah, E.; Ghalei, B. Pebax/Ionic Liquid Modified Graphene Oxide Mixed Matrix Membranes for Enhanced CO2 Capture. J. Memb. Sci. 2018, 565, 370–379. DOI: 10.1016/j.memsci.2018.08.026.
  • Bernardo, P.; Jansen, J. C.; Bazzarelli, F.; Tasselli, F.; Fuoco, A.; Friess, K.; Izák, P.; Jarmarová, V.; Kacírková, M.; Clarizia, G. Gas Transport Properties of Pebax®/room Temperature Ionic Liquid Gel Membranes. Sep. Purif. Technol. 2012, 97, 73–82. DOI: 10.1016/j.seppur.2012.02.041.
  • Jansen, J. C.; Friess, K.; Clarizia, G.; Schauer, J.; Izák, P. High Ionic Liquid Content Polymeric Gel Membranes: Preparation and Performance. Macromolecul. 2011, 44(1), 39–45. DOI: 10.1021/ma102438k.
  • Uchytil, P.; Schauer, J.; Petrychkovych, R.; Setnickova, K.; Suen, S. Y. Ionic Liquid Membranes for Carbon Dioxide-Methane Separation. J. Memb. Sci. 2011, 383(1–2), 262–271. DOI: 10.1016/j.memsci.2011.08.061.
  • Mannan, H. A.; Mukhtar, H.; Shahrun, M. S.; Bustam, M. A.; Man, Z.; Bakar, M. Z. A. Effect of [EMIM][Tf2N] Ionic Liquid on Ionic Liquid-Polymeric Membrane (ILPM) for CO2/CH4 Separation. Procedia. Eng. 2016, 148, 25–29. DOI: 10.1016/j.proeng.2016.06.477.
  • Hong, S.; Kim, D.; Jeong, Y.; Kim, E.; Jung, J. C.; Choi, N.; Nam, J.; Yip, A. C. K.; Choi, J. Healing of Microdefects in SSZ-13 Membranes via Filling with Dye Molecules and Its Effect on Dry and Wet CO2 Separations. Chem. Mater. 2018, 30, 3346–3358. DOI: 10.1021/acs.chemmater.8b00757.
  • Mannan, H. A.; Nasir, R.; Mukhtar, H.; Mohshim, D. F.; Shaharun, M. S. Role of Ionic Liquids in Eliminating Interfacial Defects in Mixed Matrix Membranes. In Interfaces in Particle and Fibre Reinforced Composites: Current Perspectives on Polymer, Ceramic, Metal and Extracellular Matrices; Woodhead Publishing, 2020 Ed. Elsevier, 2019; pp. 269–309. DOI: 10.1016/B978-0-08-102665-6.00011-X.
  • Dong, G.; Li, H.; Chen, V. Challenges and Opportunities for Mixed-Matrix Membranes for Gas Separation. J. Mater. Chem. A. 2013, 1, 4610. DOI: 10.1039/c3ta00927k.
  • Shafie, S. N. A.; Nordin, N. A. H. M.; Bilad, M. R.; Misdan, N.; Sazali, N.; Putra, Z. A.; Wirzal, M. D. H.; Idris, A.; Jaafar, J.; Man, Z. [emim][Tf2N]-modified Silica as Filler in Mixed Matrix Membrane for Carbon Dioxide Separation. Membranes. 2021, 11(5), 371. DOI: 10.3390/membranes11050371.
  • Jiang, B.; Zhang, N.; Wang, B.; Yang, N.; Huang, Z.; Yang, H.; Shu, Z. Deep Eutectic Solvent as Novel Additive for PES Membrane with Improved Performance. Sep. Purif. Technol. 2018, 194, 239–248. DOI: 10.1016/j.seppur.2017.11.036.
  • Craveiro, R.; Neves, L. A.; Duarte, A. R. C.; Paiva, A. Supported Liquid Membranes Based on Deep Eutectic Solvents for Gas Separation Processes. Sep. Purif. Technol. 2021, 254. DOI: 10.1016/j.seppur.2020.117593.