235
Views
2
CrossRef citations to date
0
Altmetric
Review

Progress and Perspective for Carbon Quantum Dots and Analogous Carbon-Based Nanomaterials in Augmenting Forward Osmosis Performance

, &
Pages 194-215 | Received 03 Apr 2022, Accepted 07 Apr 2023, Published online: 10 May 2023

References

  • Zhao, D. L.; Chung, T. S. Applications of Carbon Quantum Dots (CQDs) in Membrane Technologies: A Review. Water. Res. 2018, 147, 43–49. DOI: 10.1016/j.watres.2018.09.040.
  • Jain, H.; Garg, M. C. Fabrication of Polymeric Nanocomposite Forward Osmosis Membranes for Water Desalination—A Review. Environ. Technol. Innovations. 2021, 23, 101561. DOI: 10.1016/j.eti.2021.101561.
  • Al-Najar, B.; Peters, C. D.; Albuflasa, H.; Hankins, N. P. Pressure and Osmotically Driven Membrane Processes: A Review of the Benefits and Production of Nano-Enhanced Membranes for Desalination. Desalination. 2020, 479, 114323. DOI: 10.1016/j.desal.2020.114323.
  • Akther, N.; Phuntsho, S.; Chen, Y.; Ghaffour, N.; Shon, H. K. Recent Advances in Nanomaterial-Modified Polyamide Thin-Film Composite Membranes for Forward Osmosis Processes. J. Memb. Sci. 2019, 584, 20–45. DOI: 10.1016/j.memsci.2019.04.064.
  • Chen, H.; Huang, M.; Wang, Z.; Gao, P.; Cai, T.; Song, J.; Zhang, Y.; Meng, L. Enhancing Rejection Performance of Tetracycline Resistance Genes by a TiO2/agnps-Modified Nanofiber Forward Osmosis Membrane. Chem. Eng. J. 2020, 382, 123052. DOI: 10.1016/j.cej.2019.123052.
  • Zhang, X.; Shen, L.; Guan, C. -Y.; Liu, C. -X.; Lang, W. -Z.; Wang, Y. Construction of SiO2@mwnts Incorporated PVDF Substrate for Reducing Internal Concentration Polarization in Forward Osmosis. J. Memb. Sci. 2018, 564, 328–341. DOI: 10.1016/j.memsci.2018.07.043.
  • Ding, W.; Li, Y.; Bao, M.; Zhang, J.; Zhang, C.; Lu, J. Highly Permeable and Stable Forward Osmosis (FO) Membrane Based on the Incorporation of Al2O3 Nanoparticles into Both Substrate and Polyamide Active Layer. R.S.C. Adv. 2017, 7(64), 40311–40320. DOI: 10.1039/C7RA04046F.
  • Rastgar, M.; Shakeri, A.; Bozorg, A.; Salehi, H.; Saadattalab, V. Highly-Efficient Forward Osmosis Membrane Tailored by Magnetically Responsive Graphene Oxide/Fe3O4 Nanohybrid, Appl. Surf. Sci. 2018, 441, 923–935. DOI: 10.1016/j.apsusc.2018.02.118.
  • Ma, N.; Wei, J.; Liao, R.; Tang, C. Y. Zeolite-Polyamide Thin Film Nanocomposite Membranes: Towards Enhanced Performance for Forward Osmosis. J. Memb. Sci. 2012, (405–406), 405–406–157149–157. DOI: 10.1016/j.memsci.2012.03.002.
  • Gandhi, D.; Bandyopadhyay, R.; Soni, B. Zeolite Y from Kaolin Clay of Kachchh, India: Synthesis, Characterization and Catalytic Application. J. Indian Chem. Soc. 2021, 98(12), 100246. DOI: 10.1016/j.jics.2021.100246.
  • Ng, L. Y.; Mohammad, A. W.; Leo, C. P.; Hilal, N. Polymeric Membranes Incorporated with Metal/Metal Oxide Nanoparticles: A Comprehensive Review. Desalination. 2013, 308, 15–33. DOI: 10.1016/j.desal.2010.11.033.
  • Guo, C. X.; Zhao, D.; Zhao, Q.; Wang, P.; Lu, X. Na±functionalized Carbon Quantum Dots: A New Draw Solute in Forward Osmosis for Seawater Desalination. Chem. Commun. 2014, 50(55), 7318–7321. DOI: 10.1039/c4cc01603c.
  • Yuan, Z.; Wu, X.; Jiang, Y.; Li, Y.; Huang, J.; Hao, L.; Zhang, J.; Wang, J. Carbon Dots-Incorporated Composite Membrane Towards Enhanced Organic Solvent Nanofiltration Performance. J. Memb. Sci. 2018, 549, 1–11. DOI: 10.1016/j.memsci.2017.11.051.
  • Mahat, N. A.; Shamsudin, S. A.; Jullok, N.; Ma’radzi, A. H. Carbon Quantum Dots Embedded Polysulfone Membranes for Antibacterial Performance in the Process of Forward Osmosis. Desalination. 2020, 493, 114618. DOI: 10.1016/j.desal.2020.114618.
  • Guillen, G. R.; Pan, Y.; Li, M.; Hoek, E. M. Preparation and Characterization of Membranes Formed by Nonsolvent Induced Phase Separation: A Review, Ind. Eng. Chem. Res. 2011, 50(7), 3798–3817. DOI: 10.1021/ie101928r.
  • Gai, W.; Zhao, D. L.; Chung, T. S. Novel Thin Film Composite Hollow Fiber Membranes Incorporated with Carbon Quantum Dots for Osmotic Power Generation. J. Memb. Sci. 2018, 551, 94–102. DOI: 10.1016/j.memsci.2018.01.034.
  • Zeng, Z.; Yu, D.; He, Z.; Liu, J.; Xiao, F. X.; Zhang, Y.; Wang, R.; Bhattacharyya, D.; Tan, T. T. Y. Graphene Oxide Quantum Dots Covalently Functionalized PVDF Membrane with Significantly-Enhanced Bactericidal and Antibiofouling Performances. Sci. Rep. 2016, 6(1), 1–11. DOI: 10.1038/srep20142.
  • Zhang, C.; Wei, K.; Zhang, W.; Bai, Y.; Sun, Y.; Gu, J. Graphene Oxide Quantum Dots Incorporated into a Thin Film Nanocomposite Membrane with High Flux and Antifouling Properties for Low-Pressure Nanofiltration. ACS Appl. Mater. Interfaces. 2017, 9(12), 11082–11094. DOI: 10.1021/acsami.6b12826.
  • Xu, X.; Ray, R.; Gu, Y.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens, W. A. Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments. J. Am. Chem. Soc. 2004, 126(40), 12736–12737. DOI: 10.1021/ja040082h.
  • Sun, Y. -P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K. A. S.; Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H., et al. Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence. J. Am. Chem. Soc. 2006, 128(24), 7756–7757. DOI: 10.1021/ja062677d.
  • Baker, S. N.; Baker, G. A. Luminescent Carbon Nanodots: Emergent Nanolights, Angew. Chemie Int. Ed. 2010, 49(38), 6726–6744. DOI: 10.1002/anie.200906623.
  • Shen, J.; Zhu, Y.; Yang, X.; Li, C. Graphene Quantum Dots: Emergent Nanolights for Bioimaging, Sensors, Catalysis and Photovoltaic Devices. Chem. Commun. 2012, 48(31), 3686–3699. DOI: 10.1039/C2CC00110A.
  • Wang, Y.; Hu, A. Carbon Quantum Dots: Synthesis, Properties and Applications. J. Mater. Chem. C. 2014, 2(34), 6921–6939. DOI: 10.1039/C4TC00988F.
  • Singh, I.; Arora, R.; Dhiman, H.; Pahwa, R. Carbon Quantum Dots: Synthesis, Characterization and Biomedical Applications. Turkish J. Pharm. Sci. 2018, 15(2), 219–230. DOI: 10.4274/tjps.63497.
  • Farshbaf, M.; Davaran, S.; Rahimi, F.; Annabi, N.; Salehi, R.; Akbarzadeh, A. Carbon Quantum Dots: Recent Progresses on Synthesis, Surface Modification and Applications, Artif. Cells, Nanomed. Biotechnol. 2018, 46(7), 1331–1348. DOI: 10.1080/21691401.2017.1377725.
  • Li, L.; Wu, G.; Yang, G.; Peng, J.,Zhao, J.; Zhu, J. Focusing on Luminescent Graphene Quantum Dots: Current Status and Future Perspectives. Nanoscale. 2013, 510, 4015–4039. 10.1039/C3NR33849E.
  • Zhang, Z.; Zhang, J.; Chen, N.; Qu, L. Graphene Quantum Dots: An Emerging Material for Energy-Related Applications and Beyond. Energy Environ. Sci. 2012, 5(10), 8869–8890. DOI: 10.1039/C2EE22982J.
  • Li, H.; Kang, Z.; Liu, Y.; Lee, S. -T. Carbon Nanodots: Synthesis, Properties and Applications. J. Mater. Chem. 2012, 22(46), 24230–24253. DOI: 10.1039/C2JM34690G.
  • Zhang, H.; Huang, H.; Ming, H.; Li, H.; Zhang, L.; Liu, Y.; Kang, Z. Carbon Quantum Dots/Ag3PO4 Complex Photocatalysts with Enhanced Photocatalytic Activity and Stability Under Visible Light. J. Mater. Chem. 2012, 22(21), 10501–10506. DOI: 10.1039/C2JM30703K.
  • Lu, S.; Cong, R.; Zhu, S.; Zhao, X.; Liu, J.; Tse, J. S.; Meng, S.; Yang, B. Ph-Dependent Synthesis of Novel Structure-Controllable Polymer-Carbon NanoDots with High Acidophilic Luminescence and Super Carbon Dots Assembly for White Light-Emitting Diodes. ACS Appl. Mater. Interfaces. 2016, 8, 4062–4068. DOI: 10.1021/acsami.5b11579.
  • Ray, S. C.; Saha, A.; Jana, N. R.; Sarkar, R. Fluorescent Carbon Nanoparticles: Synthesis, Characterization, and Bioimaging Application. J. Phys. Chem. C. 2009, 113(43), 18546–18551. DOI: 10.1021/jp905912n.
  • Li, H.; He, X.; Liu, Y.; Huang, H.; Lian, S.; Lee, S. -T.; Kang, Z. One-Step Ultrasonic Synthesis of Water-Soluble Carbon Nanoparticles with Excellent Photoluminescent Properties. Carbon. 2011, 49(2), 605–609. DOI: 10.1016/j.carbon.2010.10.004.
  • Liu, X.; Pang, J.; Xu, F.; Zhang, X. Simple Approach to Synthesize Amino-Functionalized Carbon Dots by Carbonization of Chitosan, Sci. Rep. 2016, 6(1), 1–8. DOI: 10.1038/srep31100.
  • Sahu, S.; Behera, B.; Maiti, T. K.; Mohapatra, S. Simple One-Step Synthesis of Highly Luminescent Carbon Dots from Orange Juice: Application as Excellent Bio-Imaging Agents. Chem. Commun. 2012, 48(70), 8835–8837. DOI: 10.1039/C2CC33796G.
  • Zhou, J.; Sheng, Z.; Han, H.; Zou, M.; Li, C. Facile Synthesis of Fluorescent Carbon Dots Using Watermelon Peel as a Carbon Source, Mater. Lett. 2012, 66(1), 222–224. DOI: 10.1016/j.matlet.2011.08.081.
  • Wang, D.; Zhang, Y.; Cai, Z.; You, S.; Sun, Y.; Dai, Y.; Wang, R.; Shao, S.; Zou, J. Corn Stalk-Derived Carbon Quantum Dots with Abundant Amino Groups as a Selective-Layer Modifier for Enhancing Chlorine Resistance of Membranes. ACS Appl. Mater. Interfaces. 2021, 13(19), 22621–22634. DOI: 10.1021/acsami.1c04777.
  • Mehta, V. N.; Jha, S.; Kailasa, S. K. One-Pot Green Synthesis of Carbon Dots by Using Saccharum Officinarum Juice for Fluorescent Imaging of Bacteria (Escherichia coli) and Yeast (Saccharomyces cerevisiae) Cells. Mater. Sci. Eng. C. 2014, 38, 20–27. DOI: 10.1016/j.msec.2014.01.038.
  • Wang, J.; Wang, C. -F.; Chen, S. Amphiphilic Egg-Derived Carbon Dots: Rapid Plasma Fabrication, Pyrolysis Process, and Multicolor Printing Patterns, Angew. Chemie. Int Ed. 2012, 51(37), 9297–9301. DOI: 10.1002/anie.201204381.
  • Himaja, A. L.; Karthik, P. S.; Sreedhar, B.; Singh, S. P. Synthesis of Carbon Dots from Kitchen Waste: Conversion of Waste to Value Added Product. J. Fluoresc. 2014, 24(6), 1767–1773. DOI: 10.1007/s10895-014-1465-1.
  • Shen, L.; Zhang, L.; Chen, M.; Chen, X.; Wang, J. The Production of Ph-Sensitive Photoluminescent Carbon Nanoparticles by the Carbonization of Polyethylenimine and Their Use for Bioimaging. Carbon. 2013, 55, 343–349. DOI: 10.1016/j.carbon.2012.12.074.
  • Yang, D.; Hou, M.; Ning, H.; Zhang, J.; Ma, J.; Yang, G.; Han, B. Efficient SO2 Absorption by Renewable Choline Chloride–Glycerol Deep Eutectic Solvents. Green. Chem. 2013, 15(8), 2261. DOI: 10.1039/c3gc40815a.
  • Kuzmin, P. G.; Shafeev, G. A.; Bukin, V. V.; Garnov, S. V.; Farcau, C.; Carles, R.; Warot-Fontrose, B.; Guieu, V.; Viau, G. Silicon Nanoparticles Produced by Femtosecond Laser Ablation in Ethanol: Size Control Structural Characterization, and Optical Properties. J. Phys. Chem. C. 2010, 114(36), 15266–15273. DOI: 10.1021/jp102174y.
  • Choi, Y.; Jo, S.; Chae, A.; Kim, Y. K.; Park, J. E.; Lim, D.; Park, S. Y. In, Simple Microwave-Assisted Synthesis of Amphiphilic Carbon Quantum Dots from A3/B2 Polyamidation Monomer Set. ACS Appl. Mater. Interfaces. 2017, 9(33), 27883–27893. DOI: 10.1021/acsami.7b06066.
  • Schwenke, A. M.; Hoeppener, S.; Schubert, U. S. Synthesis and Modification of Carbon Nanomaterials Utilizing Microwave Heating. Adv. Mater. 2015, 27(28), 4113–4141. DOI: 10.1002/adma.201500472.
  • Castro, H. P. S.; Souza, V. S.; Scholten, J. D.; Dias, J. H.; Fernandes, J. A.; Rodembusch, F. S.; dos Reis, R.; Dupont, J.; Teixeira, S. R.; Correia, R. R. B. Synthesis and Characterisation of Fluorescent Carbon Nanodots Produced in Ionic Liquids by Laser Ablation. Chem. – A Eur. J. 2016, 22(1), 138–143. DOI: 10.1002/chem.201503286.
  • Hu, S.; Liu, J.; Yang, J.; Wang, Y.; Cao, S. Laser Synthesis and Size Tailor of Carbon Quantum Dots. J. Nanoparticle Res. 2011, 13(12), 7247–7252. DOI: 10.1007/s11051-011-0638-y.
  • Wang, R.; Lu, K. -Q.; Tang, Z. -R.; Xu, Y. -J. Recent Progress in Carbon Quantum Dots: Synthesis, Properties and Applications in Photocatalysis. J. Mater. Chem. A. 2017, 5(8), 3717–3734. DOI: 10.1039/C6TA08660H.
  • Shen, P.; Xia, Y. Synthesis-Modification Integration: One-Step Fabrication of Boronic Acid Functionalized Carbon Dots for Fluorescent Blood Sugar Sensing. Anal. Chem. 2014, 86(11), 5323–5329. DOI: 10.1021/ac5001338.
  • Zhuo, S.; Shao, M.; Lee, S. -T. Upconversion and Downconversion Fluorescent Graphene Quantum Dots: Ultrasonic Preparation and Photocatalysis. ACS. Nano. 2012, 6(2), 1059–1064. DOI: 10.1021/nn2040395.
  • Shen, Z.; Zhang, C.; Yu, X.; Li, J.; Wang, Z.; Zhang, Z.; Liu, B. Microwave-Assisted Synthesis of Cyclen Functional Carbon Dots to Construct a Ratiometric Fluorescent Probe for Tetracycline Detection. J. Mater. Chem. C. 2018, 6(36), 9636–9641. DOI: 10.1039/C8TC02982B.
  • Chen, B.; Li, F.; Li, S.; Weng, W.; Guo, H.; Guo, T.; Zhang, X.; Chen, Y.; Huang, T.; Hong, X., et al. Large Scale Synthesis of Photoluminescent Carbon Nanodots and Their Application for Bioimaging. Nanoscale. 2013, 5(5), 1967–1971. DOI: 10.1039/C2NR32675B.
  • Ma, C. -B.; Zhu, Z. -T.; Wang, H. -X.; Huang, X.; Zhang, X.; Qi, X.; Zhang, H. -L.; Zhu, Y.; Deng, X.; Peng, Y., et al. A General Solid-State Synthesis of Chemically-Doped Fluorescent Graphene Quantum Dots for Bioimaging and Optoelectronic Applications. Nanoscale. 2015, 7(22), 10162–10169. DOI: 10.1039/C5NR01757B.
  • Zhao, D. L.; Das, S.; Chung, T. S. Carbon Quantum Dots Grafted Antifouling Membranes for Osmotic Power Generation via Pressure-Retarded Osmosis Process. Environ. Sci. Technol. 2017, 51(23), 14016–14023. DOI: 10.1021/acs.est.7b04190.
  • Deng, Y. H.; Chen, J. H.; Yang, Q.; Zhuo, Y. Z. Carbon Quantum Dots (CQDs) and Polyethyleneimine (PEI) Layer-By-Layer (LBL) Self-Assembly PEK-C-Based Membranes with High Forward Osmosis Performance. Chem. Eng. Res. Des. 2021, 170, 423–433. DOI: 10.1016/j.cherd.2021.04.026.
  • Gai, W.; Zhang, Y.; Zhao, Q.; Chung, T. S. Highly Permeable Thin Film Composite Hollow Fiber Membranes for Brackish Water Desalination by Incorporating Amino Functionalized Carbon Quantum Dots and Hypochlorite Treatment. J. Memb. Sci. 2021, 620, 118952. DOI: 10.1016/j.memsci.2020.118952.
  • Doshi, K.; Mungray, A. A. Bio-Route Synthesis of Carbon Quantum Dots from Tulsi Leaves and Its Application as a Draw Solution in Forward Osmosis. J. Environ. Chem. Eng. 2020, 8(5), 104174. DOI: 10.1016/j.jece.2020.104174.
  • Miao, W.; Zou, W. S.; Zhao, Q.; Wang, Y.; Chen, X.; Wu, S.; Liu, Z.; Xu, T. Coupling Room-Temperature Phosphorescence Carbon Dots Onto Active Layer for Highly Efficient Photodynamic Antibacterial Chemotherapy and Enhanced Membrane Properties. J. Memb. Sci. 2021, 639, 119754. DOI: 10.1016/j.memsci.2021.119754.
  • Wang, W.; Ni, Y.; Xu, Z. One-Step Uniformly Hybrid Carbon Quantum Dots with High-Reactive TiO2 for Photocatalytic Application. J. Alloys Compd. 2015, 622, 303–308. DOI: 10.1016/j.jallcom.2014.10.076.
  • Wang, J.; Gao, M.; Ho, G. W. Bidentate-Complex-Derived TiO2/Carbon Dot Photocatalysts: In situ Synthesis, Versatile Heterostructures, and Enhanced H2 Evolution. J. Mater. Chem. A. 2014, 2(16), 5703–5709. DOI: 10.1039/C3TA15114J.
  • Ahirwar, S.; Mallick, S.; Bahadur, D. Electrochemical Method to Prepare Graphene Quantum Dots and Graphene Oxide Quantum Dots, ACS Omega. 2017, 2(11), 8343–8353. DOI: 10.1021/acsomega.7b01539.
  • Anwar, S.; Ding, H.; Xu, M.; Hu, X.; Li, Z.; Wang, J.; Liu, L.; Jiang, L.; Wang, D.; Dong, C., et al. Recent Advances in Synthesis, Optical Properties, and Biomedical Applications of Carbon Dots. ACS Appl. Bio Mater. 2019, 2(6), 2317–2338. DOI: 10.1021/acsabm.9b00112.
  • Hou, Y.; Lu, Q.; Deng, J.; Li, H.; Zhang, Y. One-Pot Electrochemical Synthesis of Functionalized Fluorescent Carbon Dots and Their Selective Sensing for Mercury Ion, Anal. Chim. Acta. 2015, 866, 69–74. DOI: 10.1016/j.aca.2015.01.039.
  • Yadav, S.; Saleem, H.; Ibrar, I.; Naji, O.; Hawari, A. A.; Alanezi, A. A.; Zaidi, S. J.; Altaee, A.; Zhou, J. Recent Developments in Forward Osmosis Membranes Using Carbon-Based Nanomaterials. Desalination. 2020, 482, 114375. DOI: 10.1016/j.desal.2020.114375.
  • Akther, N.; Sanahuja-Embuena, V.; Górecki, R.; Phuntsho, S.; Helix-Nielsen, C.; Shon, H. K. Employing the Synergistic Effect Between Aquaporin Nanostructures and Graphene Oxide for Enhanced Separation Performance of Thin-Film Nanocomposite Forward Osmosis Membranes. Desalination. 2021, 498, 114795. DOI: 10.1016/j.desal.2020.114795.
  • Akther, N.; Yuan, Z.; Chen, Y.; Lim, S.; Phuntsho, S.; Ghaffour, N.; Matsuyama, H.; Shon, H. Influence of Graphene Oxide Lateral Size on the Properties and Performances of Forward Osmosis Membrane. Desalination. 2020, 484, 114421. DOI: 10.1016/j.desal.2020.114421.
  • Jain, H.; Kumar, A.; Rajput, V. D.; Minkina, T.; Verma, A. K.; Wadhwa, S.; Dhupper, R.; Chandra Garg, M.; Joshi, H. Fabrication and Characterization of High-Performance Forward-Osmosis Membrane by Introducing Manganese Oxide Incited Graphene Quantum Dots. J. Environ. Manage. 2022, 305, 114335. DOI: 10.1016/j.jenvman.2021.114335.
  • Ghorbani, F.; Shakeri, A.; Ali Vafaei, M.; Salehi, H. Polyoxometalate-Cored Supramolecular Star Polymers as a Novel Crosslinker for Graphene Oxide-Based Forward Osmosis Membranes: Anti-Fouling, Super Hydrophilic and High Water Permeable. Sep. Purif. Technol. 2021, 267, 118578. DOI: 10.1016/j.seppur.2021.118578.
  • Aziz, A. A.; Wong, K. C.; Goh, P. S.; Ismail, A. F.; Azelee, I. W. Tailoring the Surface Properties of Carbon Nitride Incorporated Thin Film Nanocomposite Membrane for Forward Osmosis Desalination. J. Water. Process. Eng. 2020, 33, 101005. DOI: 10.1016/j.jwpe.2019.101005.
  • Xu, Z.; Li, P.; Li, N.; Wang, W.; Guo, C.; Shan, M.; Qian, X. Constructing Dense and Hydrophilic Forward Osmosis Membrane by Cross-Linking Reaction of Graphene Quantum Dots with Monomers for Enhanced Selectivity and Stability. J. Colloid. Interface. Sci. 2021, 589, 486–499. DOI: 10.1016/j.jcis.2021.01.004.
  • Shawky, A. M.; Kotp, Y. H.; Mousa, M. A.; Aboelfadl, M. M. S.; Hekal, E. E. Desalination Performance of Thin-Film Composite Forward Osmosis Membranes Based on Different Carbon Nanomaterials. Egypt. J. Chem. 2020, 63, 5161–5173. DOI: 10.21608/EJCHEM.2020.27083.2646.
  • Tavakol, I.; Hadadpour, S.; Shabani, Z.; Ahmadzadeh Tofighy, M.; Mohammadi, T.; Sahebi, S. Synthesis of Novel Thin Film Composite (TFC) Forward Osmosis (FO) Membranes Incorporated with Carboxylated Carbon Nanofibers (CNFs. J. Environ. Chem. Eng. 2020, 8(6), 104614. DOI: 10.1016/j.jece.2020.104614.
  • Rezaei-DashtArzhandi, M.; Sarrafzadeh, M. H.; Goh, P. S.; Lau, W. J.; Ismail, A. F.; Mohamed, M. A. Development of Novel Thin Film Nanocomposite Forward Osmosis Membranes Containing Halloysite/Graphitic Carbon Nitride Nanoparticles Towards Enhanced Desalination Performance. Desalination. 2018, 447, 18–28. DOI: 10.1016/j.desal.2018.08.003.
  • Seyedpour, S. F.; Rahimpour, A.; Shamsabadi, A.; Soroush, M. Improved Performance and Antifouling Properties of Thin-Film Composite Polyamide Membranes Modified with Nano-Sized Bactericidal Graphene Quantum Dots for Forward Osmosis. Chem. Eng. Res. Des. 2018, 139, 321–334. DOI: 10.1016/j.cherd.2018.09.041.
  • Li, Y.; Huang, M.; Chen, D.; Chen, G. Fabrication of Carbon Nanotube Membrane for Enhanced Performance in Forward Osmosis Process. DEStech Trans. Environ. Energy Earth Sci. 2017, 458–462. DOI: 10.12783/dteees/icepe2017/11883.
  • Shen, L.; Xiong, S.; Wang, Y. Graphene Oxide Incorporated Thin-Film Composite Membranes for Forward Osmosis Applications. Chem. Eng. Sci. 2016, 143, 194–205. DOI: 10.1016/j.ces.2015.12.029.
  • Tian, M.; Wang, Y. -N.; Wang, R. Synthesis and Characterization of Novel High-Performance Thin Film Nanocomposite (TFN) FO Membranes with Nanofibrous Substrate Reinforced by Functionalized Carbon Nanotubes. Desalination. 2015, 370, 79–86. DOI: 10.1016/j.desal.2015.05.016.
  • Morales-Torres, S.; Esteves, C. M. P.; Figueiredo, J. L.; Silva, A. M. T. Thin-Film Composite Forward Osmosis Membranes Based on Polysulfone Supports Blended with Nanostructured Carbon Materials. J. Memb. Sci. 2016, 520, 326–336. DOI: 10.1016/j.memsci.2016.07.009.
  • Choi, H.; Son, M.; Yoon, S.; Celik, E.; Kang, S.; Park, H.; Park, C. H.; Choi, H. Alginate Fouling Reduction of Functionalized Carbon Nanotube Blended Cellulose Acetate Membrane in Forward Osmosis. Chemosphere. 2015, 136, 204–210. DOI: 10.1016/j.chemosphere.2015.05.003.
  • Zou, S.; Smith, E. D.; Lin, S.; Martin, M.; He, Z. Mitigation of Bidirectional Solute Flux in Forward Osmosis via Membrane Surface Coating of Zwitterion Functionalized Carbon Nanotubes. Environ. Int. 2019, 131, 104970. DOI: 10.1016/j.envint.2019.104970.
  • Hegab, H. M.; ElMekawy, A.; Barclay, T. G.; Michelmore, A.; Zou, L.; Saint, C. P.; Ginic-Markovic, M. Effective in-Situ Chemical Surface Modification of Forward Osmosis Membranes with Polydopamine-Induced Graphene Oxide for Biofouling Mitigation. Desalination. 2016, 385, 126–137. DOI: 10.1016/j.desal.2016.02.021.
  • Soroush, A.; Ma, W.; Silvino, Y.; Rahaman, M. S. Surface Modification of Thin Film Composite Forward Osmosis Membrane by Silver-Decorated Graphene-Oxide Nanosheets. Environ. Sci. 2015, 2(4), 395–405. DOI: 10.1039/C5EN00086F.
  • Fadaie, N.; Sheikhi, M.; Mohammadi, T.; Tofighy, M. A.; Rajabzadeh, S.; Sahebi, S. Novel Plasma Functionalized Graphene Nanoplatelets (GNPs) Incorporated in Forward Osmosis Substrate with Improved Performance and Tensile Strength. J. Environ. Chem. Eng. 2021, 9(4), 105708. DOI: 10.1016/j.jece.2021.105708.
  • Zhou, Z.; Hu, Y.; Boo, C.; Liu, Z.; Li, J.; Deng, L.; An, X. High-Performance Thin-Film Composite Membrane with an Ultrathin Spray-Coated Carbon Nanotube Interlayer, Environ. Sci. Technol. Lett. 2018, 5(5), 243–248. DOI: 10.1021/acs.estlett.8b00169.
  • Zhao, X.; Li, J.; Liu, C. A Novel TFC-Type FO Membrane with Inserted Sublayer of Carbon Nanotube Networks Exhibiting the Improved Separation Performance. Desalination. 2017, 413, 176–183. DOI: 10.1016/j.desal.2017.03.021.
  • Wang, D.; Li, J.; Gao, B.; Chen, Y.; Wang, Z. Triple-Layered Thin Film Nanocomposite Membrane Toward Enhanced Forward Osmosis Performance. J. Memb. Sci. 2021, 620, 118879. DOI: 10.1016/j.memsci.2020.118879.
  • Li, Y.; Zhao, S.; Tian, E.; Ren, Y. Preparation and Characterization of Novel Forward Osmosis Membrane Incorporated with Sulfonated Carbon Nanotubes. R.S.C. Adv. 2018, 8(71), 41032–41039. DOI: 10.1039/C8RA08900K.
  • Tiraferri, A.; Vecitis, C. D.; Elimelech, M. Covalent Binding of Single-Walled Carbon Nanotubes to Polyamide Membranes for Antimicrobial Surface Properties. ACS Appl. Mater. Interfaces. 2011, 3(8), 2869–2877. DOI: 10.1021/am200536p.
  • Mokarizadeh, H.; Moayedfard, S.; Maleh, M. S.; Mohamed, S. I. G. P.; Nejati, S.; Esfahani, M. R. The Role of Support Layer Properties on the Fabrication and Performance of Thin-Film Composite Membranes: The Significance of Selective Layer-Support Layer Connectivity, Sep. Purif. Technol. 2021, 278, 119451. DOI: 10.1016/j.seppur.2021.119451.
  • Perreault, F.; de Faria, A. F.; Nejati, S.; Elimelech, M. Antimicrobial Properties of Graphene Oxide Nanosheets: Why Size Matters. ACS. Nano. 2015, 9(7), 7226–7236. DOI: 10.1021/acsnano.5b02067.
  • Akhavan, O.; Ghaderi, E. Toxicity of Graphene and Graphene Oxide Nanowalls Against Bacteria. ACS. Nano. 2010, 4(10), 5731–5736. DOI: 10.1021/nn101390x.
  • Tu, Y.; Lv, M.; Xiu, P.; Huynh, T.; Zhang, M.; Castelli, M.; Liu, Z.; Huang, Q.; Fan, C.; Fang, H., et al. Destructive Extraction of Phospholipids from Escherichia coli Membranes by Graphene Nanosheets. Nat. Nanotechnol. 2013, 8, 594–601. DOI: 10.1038/nnano.2013.125.
  • Daer, S.; Kharraz, J.; Giwa, A.; Hasan, S. W. Recent Applications of Nanomaterials in Water Desalination: A Critical Review and Future Opportunities. Desalination. 2015, 367, 37–48. DOI: 10.1016/j.desal.2015.03.030.
  • Faria, A. F.; Liu, C.; Xie, M.; Perreault, F.; Nghiem, L. D.; Ma, J.; Elimelech, M. Thin-Film Composite Forward Osmosis Membranes Functionalized with Graphene Oxide–Silver Nanocomposites for Biofouling Control. J. Memb. Sci. 2017, 525, 146–156. DOI: 10.1016/j.memsci.2016.10.040.
  • Goh, P. S.; Ismail, A. F. Graphene-Based Nanomaterial: The State-Of-The-Art Material for Cutting Edge Desalination Technology. Desalination. 2015, 356, 115–128. DOI: 10.1016/j.desal.2014.10.001.
  • Zhang, L.; Shi, G. -Z.; Qiu, S.; Cheng, L. -H.; Chen, H. -L. Preparation of High-Flux Thin Film Nanocomposite Reverse Osmosis Membranes by Incorporating Functionalized Multi-Walled Carbon Nanotubes, Desalin. Water. Treat. 2011, 34, 19–24. DOI: 10.5004/dwt.2011.2801.
  • Vatanpour, V.; Esmaeili, M.; Farahani, H. D. A. Fouling Reduction and Retention Increment of Polyethersulfone Nanofiltration Membranes Embedded by Amine-Functionalized Multi-Walled Carbon Nanotubes. J. Memb. Sci. 2014, 466, 70–81. DOI: 10.1016/j.memsci.2014.04.031.
  • Wang, X.; Wang, X.; Xiao, P.; Li, J.; Tian, E.; Zhao, Y.; Ren, Y. High Water Permeable Free-Standing Cellulose Triacetate/Graphene Oxide Membrane with Enhanced Antibiofouling and Mechanical Properties for Forward Osmosis, Colloids Surfaces a. Physicochem. Eng. Asp. 2016, 508, 327–335. DOI: 10.1016/j.colsurfa.2016.08.077.
  • Amini, M.; Jahanshahi, M.; Rahimpour, A. Synthesis of Novel Thin Film Nanocomposite (TFN) Forward Osmosis Membranes Using Functionalized Multi-Walled Carbon Nanotubes. J. Memb. Sci. 2013, 435, 233–241. DOI: 10.1016/j.memsci.2013.01.041.
  • Goh, I.; Abdullah, N. Recent Progresses of Forward Osmosis Membranes Formulation and Design for Wastewater Treatment. Water. 2019, 11, 2043. DOI: 10.3390/w11102043.
  • Tiraferri, A.; Yip, N. Y.; Phillip, W. A.; Schiffman, J. D.; Elimelech, M. Relating Performance of Thin-Film Composite Forward Osmosis Membranes to Support Layer Formation and Structure. J. Memb. Sci. 2011, 367, 340–352. DOI: 10.1016/j.memsci.2010.11.014.
  • Arjmandi, M.; Peyravi, M.; Altaee, A.; Arjmandi, A.; Pourafshari Chenar, M.; Jahanshahi, M.; Binaeian, E. A State-Of-The-Art Protocol to Minimize the Internal Concentration Polarization in Forward Osmosis Membranes. Desalination. 2020, 480, 114355. DOI: 10.1016/j.desal.2020.114355.
  • Wu, X.; Kohl, T. M.; Tsanaktsidis, J.; Xie, Z. Improved Performance and Mitigated Internal Concentration Polarization of Thin-Film Composite Forward Osmosis Membrane with Polysulfone/Polyaniline Substrate. ACS Appl. Polym. Mater. 2021, 3, 5758–5766. DOI: 10.1021/acsapm.1c00964.
  • Yip, N. Y.; Tiraferri, A.; Phillip, W. A.; Schiffman, J. D.; Elimelech, M. High Performance Thin-Film Composite Forward Osmosis Membrane. Environ. Sci. Technol. 2010, 44, 3812–3818. DOI: 10.1021/es1002555.
  • Lu, P.; Liang, S.; Zhou, T.; Mei, X.; Zhang, Y.; Zhang, C.; Umar, A.; Wang, Q. Layered Double Hydroxide/Graphene Oxide Hybrid Incorporated Polysulfone Substrate for Thin-Film Nanocomposite Forward Osmosis Membranes. R.S.C. Adv. 2016, 6, 56599–56609. DOI: 10.1039/C6RA10080E.
  • Bui, N. N.; Lind, M. L.; Hoek, E. M. V.; McCutcheon, J. R. Electrospun Nanofiber Supported Thin Film Composite Membranes for Engineered Osmosis. J. Memb. Sci. 2011, 385–386. DOI: 10.1016/j.memsci.2011.08.002.
  • Bui, N. -N.; McCutcheon, J. R. Hydrophilic Nanofibers as New Supports for Thin Film Composite Membranes for Engineered Osmosis. Environ. Sci. Technol. 2013, 47, 1761–1769. DOI: 10.1021/es304215g.
  • Tian, M.; Qiu, C.; Liao, Y.; Chou, S.; Wang, R. Preparation of Polyamide Thin Film Composite Forward Osmosis Membranes Using Electrospun Polyvinylidene Fluoride (PVDF) Nanofibers as Substrates, Sep. Purif. Technol. 2013, 118, 727–736. DOI: 10.1016/j.seppur.2013.08.021.
  • Huang, L.; McCutcheon, J. R. Hydrophilic Nylon 6,6 Nanofibers Supported Thin Film Composite Membranes for Engineered Osmosis. J. Memb. Sci. 2014, 457, 162–169. DOI: 10.1016/j.memsci.2014.01.040.
  • Sukitpaneenit, P.; Chung, T. -S. High Performance Thin-Film Composite Forward Osmosis Hollow Fiber Membranes with Macrovoid-Free and Highly Porous Structure for Sustainable Water Production. Environ. Sci. Technol. 2012, 46, 7358–7365. DOI: 10.1021/es301559z.
  • Han, G.; Chung, T. -S.; Toriida, M.; Tamai, S. Thin-Film Composite Forward Osmosis Membranes with Novel Hydrophilic Supports for Desalination. J. Memb. Sci. 2012, 423–424. DOI: 10.1016/j.memsci.2012.09.005.
  • Haque, A.; Ramasetty, A. Theoretical Study of Stress Transfer in Carbon Nanotube Reinforced Polymer Matrix Composites, Compos. Struct. 2005, 71, 68–77. DOI: 10.1016/j.compstruct.2004.09.029.
  • Shen, G. A.; Namilae, S.; Chandra, N. Load Transfer Issues in the Tensile and Compressive Behavior of Multiwall Carbon Nanotubes, Mater. Sci. Eng. A. 2006, 429, 66–73. DOI: 10.1016/j.msea.2006.04.110.
  • Yang, K.; Gu, M.; Guo, Y.; Pan, X.; Mu, G. Effects of Carbon Nanotube Functionalization on the Mechanical and Thermal Properties of Epoxy Composites. Carbon. 2009, 47, 1723–1737. DOI: 10.1016/j.carbon.2009.02.029.
  • Shaffer, D. L.; Werber, J. R.; Jaramillo, H.; Lin, S.; Elimelech, M. Forward Osmosis: Where are We Now? Desalination. 2015, 356, 271–284. DOI: 10.1016/j.desal.2014.10.031.
  • Achilli, A.; Cath, T. Y.; Childress, A. E. Selection of Inorganic-Based Draw Solutions for Forward Osmosis Applications. J. Memb. Sci. 2010, 364, 233–241. DOI: 10.1016/j.memsci.2010.08.010.
  • Dutta, S.; Dave, P.; Nath, K. Performance of Low Pressure Nanofiltration Membrane in Forward Osmosis Using Magnesium Chloride as Draw Solute. J. Water. Process. Eng. 2020, 33, 101092. DOI: 10.1016/j.jwpe.2019.101092.
  • Dutta, S.; Nath, K. Feasibility of Forward Osmosis Using Ultra Low Pressure RO Membrane and Glauber Salt as Draw Solute for Wastewater Treatment. J. Environ. Chem. Eng. 2018, 6, 5635–5644. DOI: 10.1016/j.jece.2018.08.037.
  • McCormick, P.; Pellegrino, J.; Mantovani, F.; Sarti, G. Water, Salt, and Ethanol Diffusion Through Membranes for Water Recovery by Forward (Direct) Osmosis Processes. J. Memb. Sci. 2008, 325, 467–478. DOI: 10.1016/j.memsci.2008.08.011.
  • Ge, Q.; Su, J.; Amy, G. L.; Chung, T. S. Exploration of Polyelectrolytes as Draw Solutes in Forward Osmosis Processes. Water. Res. 2012, 46, 1318–1326. DOI: 10.1016/j.watres.2011.12.043.
  • Phuntsho, S.; Shon, H. K.; Majeed, T.; El Saliby, I.; Vigneswaran, S.; Kandasamy, J.; Hong, S.; Lee, S. Blended Fertilizers as Draw Solutions for Fertilizer-Drawn Forward Osmosis Desalination. Environ. Sci. Technol. 2012, 46, 4567–4575. DOI: 10.1021/es300002w.
  • Dutta, S.; Nath, K. Dewatering of Brackish Water and Wastewater by an Integrated Forward Osmosis and Nanofiltration System for Direct Fertigation. Arab. J. Sci. Eng. 2019, 44, 9977–9986. DOI: 10.1007/s13369-019-04102-3.
  • Cath, T. Y.; Childress, A. E.; Elimelech, M. Forward Osmosis: Principles, Applications, and Recent Developments. J. Memb. Sci. 2006, 281, 70–87. DOI: 10.1016/j.memsci.2006.05.048.
  • Razmjou, A.; Barati, M. R.; Simon, G. P.; Suzuki, K.; Wang, H. Fast Deswelling of Nanocomposite Polymer Hydrogels via Magnetic Field-Induced Heating for Emerging FO Desalination. Environ. Sci. Technol. 2013, 47, 6297–6305. DOI: 10.1021/es4005152.
  • Dutta, S.; Nath, K. Prospect of Ionic Liquids and Deep Eutectic Solvents as New Generation Draw Solution in Forward Osmosis Process. J. Water. Process. Eng. 2018, 21, 163–176. DOI: 10.1016/j.jwpe.2017.12.012.
  • Dutta, S.; Dave, P.; Nath, K. Choline Chloride-Glycerol (1: 2 Mol) as Draw Solution in Forward Osmosis for Dewatering Purpose, Membr. Water. Treat. 2022, 13, 63–72. DOI: 10.12989/mwt.2022.13.2.063.
  • Alejo, T.; Arruebo, M.; Carcelen, V., Monsalvo, M.; Sebastian, V.Advances in Draw Solutes for Forward Osmosis: Hybrid Organic-Inorganic Nanoparticles and Conventional Solutes. Chem. Eng. J. 2017, 309, 738–752. 10.1016/j.cej.2016.10.079.
  • Zhao, Q.; Chen, N.; Zhao, D.; Lu, X. Thermoresponsive Magnetic Nanoparticles for Seawater Desalination. ACS Appl. Mater. Interfaces. 2013, 5, 11453–11461. DOI: 10.1021/am403719s.
  • Zhou, A.; Luo, H.; Wang, Q.; Chen, L.; Zhang, T. C.; Tao, T. Magnetic Thermoresponsive Ionic Nanogels as Novel Draw Agents in Forward Osmosis. R.S.C. Adv. 2015, 5, 15359–15365. DOI: 10.1039/C4RA12102C.
  • Tayel, A.; Nasr, P.; Sewilam, H. Forward Osmosis Desalination Using Pectin-Coated Magnetic Nanoparticles as a Draw Solution. Clean Technol. Environ. Policy. 2019, 21, 1617–1628. DOI: 10.1007/s10098-019-01738-5.
  • Liu, Z.; Bai, H.; Lee, J.; Sun, D. D. A Low-Energy Forward Osmosis Process to Produce Drinking Water. Energy & Environ. Sci. 2011, 4, 2582. DOI: 10.1039/c1ee01186c.
  • Ge, Q.; Su, J.; Chung, T. -S.; Amy, G. Hydrophilic Superparamagnetic Nanoparticles: Synthesis, Characterization, and Performance in Forward Osmosis Processes, Ind. Eng. Chem. Res. 2011, 50, 382–388. DOI: 10.1021/ie101013w.
  • Khazaie, F.; Sheshmani, S.; Shokrollahzadeh, S.; Shahvelayati, A. S. Desalination of Saline Water via Forward Osmosis Using Magnetic Nanoparticles Covalently Functionalized with Citrate Ions as Osmotic Agent. Environ. Technol. (United Kingdom). 2020, 0, 1–11. DOI: 10.1080/09593330.2020.1866087.
  • Kim, C.; Lee, J.; Schmucker, D.; Fortner, J. D. Highly Stable Superparamagnetic Iron Oxide Nanoparticles as Functional Draw Solutes for Osmotically Driven Water Transport. Npj. Clean Water. 2020, 3, 1–6. DOI: 10.1038/s41545-020-0055-9.
  • Ling, M. M.; Wang, K. Y.; Chung, T. -S. Highly Water-Soluble Magnetic Nanoparticles as Novel Draw Solutes in Forward Osmosis for Water Reuse. Ind. Eng. Chem. Res. 2010, 49, 5869–5876. DOI: 10.1021/ie100438x.
  • Ling, M. M.; Chung, T. S. Surface-Dissociated Nanoparticle Draw Solutions in Forward Osmosis and the Regeneration in an Integrated Electric Field and Nanofiltration System, Ind. Eng. Chem. Res. 2012, 51, 15463–15471. DOI: 10.1021/ie302331h.
  • Dey, P.; Izake, E. L. Magnetic Nanoparticles Boosting the Osmotic Efficiency of a Polymeric FO Draw Agent: Effect of Polymer Conformation. Desalination. 2015, 373, 79–85. DOI: 10.1016/j.desal.2015.07.010.
  • Zufía-Rivas, J.; Morales, P.; Veintemillas-Verdaguer, S. Effect of the Sodium Polyacrylate on the Magnetite Nanoparticles Produced by Green Chemistry Routes: Applicability in Forward Osmosis. Nanomaterials. 2018, 8. DOI: 10.3390/nano8070470.
  • Ban, I.; Markuš, S.; Gyergyek, S.; Drofenik, M.; Korenak, J.; Helix-Nielsen, C.; Petrinić, I. Synthesis of Poly-Sodium-Acrylate (PSA)-Coated Magnetic Nanoparticles for Use in Forward Osmosis Draw Solutions. Nanomaterials. 2019, 9. DOI: 10.3390/nano9091238.
  • Na, Y.; Yang, S.; Lee, S. Evaluation of Citrate-Coated Magnetic Nanoparticles as Draw Solute for Forward Osmosis. Desalination. 2014, 347, 34–42. DOI: 10.1016/j.desal.2014.04.032.
  • Khazaie, F.; Shokrollahzadeh, S.; Bide, Y.; Sheshmani, S.; Shahvelayati, A. S. Forward Osmosis Using Highly Water Dispersible Sodium Alginate Sulfate Coated-Fe3O4 Nanoparticles as Innovative Draw Solution for Water Desalination. Process Saf. Environ. Prot. 2021, 146, 789–799. DOI: 10.1016/j.psep.2020.12.010.
  • Bai, H.; Liu, Z.; Sun, D. D. Highly Water Soluble and Recovered Dextran Coated fe3o 4 Magnetic Nanoparticles for Brackish Water Desalination, Sep. Purif. Technol. 2011, 81, 392–399. DOI: 10.1016/j.seppur.2011.08.007.
  • Shabani, Z.; Rahimpour, A. Chitosan- and Dehydroascorbic Acid-Coated Fe3O4 Nanoparticles: Preparation, Characterization and Their Potential as Draw Solute in Forward Osmosis Process, Iran. Polym. J.(english Ed). 2016, 25, 887–895. DOI: 10.1007/s13726-016-0474-0.
  • Liu, Y. -Q.; Ju, X. -J.; Pu, X. -Q.; Wen, S.; Liu, W. -Y.; Liu, Z.; Wang, W.; Xie, R.; Chu, L. -Y. Visual Detection of Trace Lead(ii) Using a Forward Osmosis-Driven Device Loaded with Ion-Responsive Nanogels. J. Hazard. Mater. 2021, 404, 124157. DOI: 10.1016/j.jhazmat.2020.124157.
  • Shakeri, A.; Salehi, H.; Khankeshipour, N.; Nakhjiri, M. T.; Ghorbani, F. Magnetic Nanoparticle-Crosslinked Ferrohydrogel as a Novel Class of Forward Osmosis Draw Agent. J. Nanoparticle Res. 2018, 20. DOI: 10.1007/s11051-018-4437-6.
  • Amjad, M.; Gardy, J.; Hassanpour, A.; Wen, D. Novel Draw Solution for Forward Osmosis Based Solar Desalination, Appl. Energy. 2018, 230, 220–231. DOI: 10.1016/j.apenergy.2018.08.021.
  • Shakeri, A.; Nakhjiri, M. T.; Salehi, H.; Ghorbani, F.; Khankeshipour, N. Preparation of Polymer-Carbon Nanotubes Composite Hydrogel and Its Application as Forward Osmosis Draw Agent. J. Water. Process. Eng. 2018, 24, 42–48. DOI: 10.1016/j.jwpe.2018.04.018.
  • Nazari, R.; Aghababaie, M.; Razmjou, A.; Landarani-Isfahani, A.; Amini, M.; Hajjari, M.; Mirkhani, V.; Moghadam, M.; Taheri-Kafrani, A. Multifunctional Hyperbranched Polyglycerol-Grafted Silica-Encapsulated Superparamagnetic Iron Oxide Nanoparticles as Novel and Reusable Draw Agents in Forward Osmosis Process, Desalin. Water. Treat. 2017, 64, 81–89. DOI: 10.5004/dwt.2017.20127.
  • Ling, M. M.; Chung, T. -S. Desalination Process Using Super Hydrophilic Nanoparticles via Forward Osmosis Integrated with Ultrafiltration Regeneration. Desalination. 2011, 278, 194–202. DOI: 10.1016/j.desal.2011.05.019.
  • Zhao, D.; Wang, P.; Zhao, Q.; Chen, N.; Lu, X. Thermoresponsive Copolymer-Based Draw Solution for Seawater Desalination in a Combined Process of Forward Osmosis and Membrane Distillation. Desalination. 2014, 348, 26–32. DOI: 10.1016/j.desal.2014.06.009.
  • Rafiee, F.; Tajfar, N.; Mohammadnejad, M. The Synthesis and Efficiency Investigation of a Boronic Acid-Modified Magnetic Chitosan Quantum Dot Nanocomposite in the Detection of Cu2+ Ions. Int. J. Biol. Macromol., 2021, 189, 477–482. doi:10.1016/j.ijbiomac.2021.08.158
  • Panda, S.; Paital, B.; Mohapatra, S. CQD@γ-Fe2O3 Multifunctional Nanoprobe for Selective Fluorescence Sensing, Detoxification and Removal of Hg(ii), Colloids and Surfaces A: Physicochemical. Eng. Asp, 2020, 589, 124445. doi:10.1016/j.colsurfa.2020.124445
  • Suwaileh, W.; Pathak, N.; Shon, H.; Hilal, N. Forward Osmosis Membranes and Processes: A Comprehensive Review of Research Trends and Future Outlook. Desalination. 2020, 485, 114455. DOI: 10.1016/j.desal.2020.114455.
  • Pendergast, M. M.; Nowosielski-Slepowron, M. S.; Tracy, J. Going Big with Forward Osmosis, Desalin. Water. Treat. 2016, 57, 26529–26538. DOI: 10.1080/19443994.2016.1168581.
  • ForwardOsmosisTech. Update: Forward Water Technologies’ Industrial Scale Pilot Plant is Demonstrating Low Energy ZLD, https://www.forwardosmosistech.com/. Accessed Dec. 13, 2022.
  • Forward osmosis desalination. Dec. 12, 2022. https://www.modernwater.com/consulted
  • Freyberg, T. Dec 10, 2022. https://www.waterworld.com/home/article/16203004/trevi-systems-reports-lowest-energy-use-from-forward-osmosis-desalination-trial-in-abu-dhabi.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.