253
Views
4
CrossRef citations to date
0
Altmetric
Review Article

A comprehensive review of sizing and uncertainty modeling methodologies for the optimal design of hybrid energy systems

&
Pages 1567-1612 | Received 10 May 2023, Accepted 26 Aug 2023, Published online: 12 Sep 2023

References

  • http://Www.Garv.Gov.in/Dashboard. n.d.a.
  • https://Grhyso.Es.Tl/. n.d.b.
  • https://Ihoga.Unizar.Es/En/. n.d.c.
  • https://Ihoga.Unizar.Es/En/Descarga/. n.d.d.
  • https://Sel.Me.Wisc.Edu/Trnsys/Features/Features.Html. n.d.e.
  • https://Www.Ddugjy.Gov.in/Page/Definition_electrified_village. n.d.-f.
  • https://Www.Insel.Eu/En/Home_en.Html. n.d.g.
  • https://Www.Insel.Eu/En/What-Is-Insel.Html. n.d.h.
  • https://Www.Nrcan.Gc.ca/Maps-Tools-and-Publications/Tools/Modelling-Tools/Retscreen/7465. n.d.-i.
  • Abdelshafy, A. M., H. Hassan, and J. Jurasz. 2018. Optimal design of a grid-connected desalination plant powered by renewable energy resources using a hybrid PSO–GWO approach. Energy Conversion and Management 173 (May):331–47. doi:10.1016/j.enconman.2018.07.083.
  • Agathokleous, R. A., and S. A. Kalogirou. 2021. Smart energy PV roofs as the first step towards 100 % res electricity production for Mediterranean Islands: The case of cyprus. Smart Energy 4:100053. doi:10.1016/j.segy.2021.100053.
  • Aien, M., M. Rashidinejad, and M. Fotuhi-Firuzabad. 2014. On possibilistic and probabilistic uncertainty assessment of power flow problem: A review and a new approach. Renewable and Sustainable Energy Reviews 37:883–95. doi:10.1016/j.rser.2014.05.063.
  • Al-Ashwal, A. M., and I. S. Moghram. 1997. Proportion assessment of combined PV-wind generating systems. Renewable Energy 10 (1):43–51. doi:10.1016/0960-1481(96)00011-0.
  • Al-Badi, A. H., and H. Bourdoucen. 2012. Feasibility analysis of renewable hybrid energy supply options for Masirah Island. International Journal of Sustainable Engineering 5 (3):244–51. doi:10.1080/19397038.2011.610009.
  • Al-Badi, A. H., A. Malik, and A. Gastli. 2009. Assessment of renewable energy resources potential in Oman and identification of barrier to their significant utilization. Renewable and Sustainable Energy Reviews 13 (9):2734–39. doi:10.1016/j.rser.2009.06.010.
  • Al-Falahi, M. D. A., S. D. G. Jayasinghe, and H. Enshaei. 2017. A review on recent size optimization methodologies for standalone solar and wind hybrid renewable energy system. Energy Conversion and Management 143:252–74. doi:10.1016/j.enconman.2017.04.019.
  • Al-Ghussain, L., H. Ahmed, and F. Haneef. 2018. Optimization of hybrid PV-Wind system: Case study al-Ta Fi Lah cement factory, Jordan. 30 (July):24–36. doi:10.1016/j.seta.2018.08.008.
  • Alisan, A., and V. M. Istemihan Genc. 2020. Information-gap decision theory based transient stability constrained optimal power flow considering the uncertainties of wind energy resources. IET Renewable Power Generation 14 (11):1946–55. doi:10.1049/iet-rpg.2019.1367.
  • Allan, R. N., B. Borkowska, and C. H. Grigg. 1974. Probabilistic analysis of power flows. Proceedings of the Institution of Electrical Engineers 121 (12):1551–56. doi:10.1049/piee.1974.0320.
  • Allan, R. N., A. M. Leite da Silva, and R. C. Burchett. 1981. Evaluation methods and accuracy in probabilistic load flow solutions. Engineering News-Record PAS-100 (5):2539–46. doi:10.1109/mper.1981.5511531.
  • Alsayed, M., M. Cacciato, G. Scarcella, and G. Scelba. 2013. Multicriteria optimal sizing of Photovoltaic-wind turbine grid connected systems. 28 (2):370–79. doi:10.1109/TEC.2013.2245669.
  • Altun, A. F., and M. Kilic. 2020. Design and performance evaluation based on economics and environmental impact of a PV-Wind-diesel and battery standalone power system for various climates in Turkey. Renewable Energy 157:424–43. doi:10.1016/j.renene.2020.05.042.
  • Amaral, T. S., C. L. T. Borges, and A. M. Rei. 2010. Composite system well-being evaluation based on non-sequential Monte Carlo simulation. Electric Power Systems Research 80 (1):37–45. doi:10.1016/j.epsr.2009.08.004.
  • Amer, M., A. Namaane, and N. K. M. Sirdi. 2013. Optimization of hybrid renewable energy systems (HRES) using PSO for cost reduction. Energy Procedia 42:318–27. doi:10.1016/j.egypro.2013.11.032.
  • Amirkhalili, S. A., and A. R. Zahedi. 2018. Techno-economic analysis of a stand- alone hybrid wind/fuel cell microgrid system: A case study in Kouhin Region in Qazvin. Fuel Cells 18 (4):551–60. doi:10.1002/fuce.201700149.
  • Amru, A., A. H. Etemadi, and A. Khodaei. 2016. Treatment of uncertainty for next generation power systems: State-of-the-art in stochastic optimization. Electric Power Systems Research 141:233–45. doi:10.1016/j.epsr.2016.08.009.
  • Anoune, K., M. Bouya, A. Astito, and A. Ben Abdellah. 2018. Sizing methods and optimization techniques for PV-Wind based hybrid Renewable energy system: A review. Renewable and Sustainable Energy Reviews 93 (April):652–73. doi:10.1016/j.rser.2018.05.032.
  • Ardakani, F. J., G. Riahy, and M. Abedi. 2010. Optimal sizing of a grid-connected hybrid system for North-West of Iran-case study. 2010 9th International Conference on Environment and Electrical Engineering, 16-19 May 2010, IEEE, Prague, Czech Republic, 29–32. doi:10.1109/EEEIC.2010.5490006.
  • Arief, Y. Z., N. Anisah Aziera Abdul Halim, and M. Hafiez Izzwan Saad. 2019. Optimization of hybrid renewable energy in Sarawak remote rural area using HOMER software. 2019 International UNIMAS STEM 12th Engineering Conference, EnCon 2019 - Proceedings, 1–5. 10.1109/EnCon.2019.8861255.
  • Aronson, E. A., D. L. Caskey, and B. C. Caskey. 1981. SOLSTOR description and user's guide. SAND-79-2330, United States, Sandia National Laboratories. doi:10.2172/6551776.
  • Arriagada, E., E. López, M. López, R. Blasco-Gimenez, C. Roa, and M. Poloujadoff. 2015. A probabilistic economic dispatch model and methodology considering Renewable energy, demand and generator uncertainties. Electric Power Systems Research 121:325–32. doi:10.1016/j.epsr.2014.11.018.
  • Assad, M. E. H., M. A. Rosen, and M. A. Rosen. 2021. Design and performance optimization of renewable energy systems. Academic Press. doi:10.1016/C2019-0-03733-8.
  • Atwa, Y. M., E. F. El-Saadany, M. M. A. Salama, and R. Seethapathy. 2010. Optimal renewable resources mix for distribution system energy loss minimization. IEEE Transactions on Power Systems 25 (1):360–70. doi:10.1109/TPWRS.2009.2030276.
  • Awerbuch, S. 2006. Portfolio-based electricity generation planning: Policy implications for renewables and energy security. Mitigation and Adaptation Strategies for Global Change 11 (3):693–710. doi:10.1007/s11027-006-4754-4.
  • Ayop, R., N. Mat Isa, and C. Wei Tan. 2018. Components sizing of photovoltaic stand-alone system based on loss of power supply probability. Renewable and Sustainable Energy Reviews 81 (May 2016):2731–43. doi:10.1016/j.rser.2017.06.079.
  • Aznan, A. S., I. Musirin, S. Aliyah Mohd Saleh, and N. Azzammudin Rahmat. 2015. Optimization of hybrid renewable energy system (HRES) using Modified evolutionary strategy for cost minimization. Applied Mechanics and Materials 785:546–50. doi:10.4028/www.scientific.net/amm.785.546.
  • Bahramara, S., M. Parsa Moghaddam, and M. R. Haghifam. 2016. Optimal planning of hybrid renewable energy systems using HOMER: A review. Renewable and Sustainable Energy Reviews 62:609–20. doi:10.1016/j.rser.2016.05.039.
  • Baruah, A., M. Basu, and D. Amuley. 2021. Modeling of an autonomous hybrid renewable energy system for electrification of a township: A case study for Sikkim, India. Renewable and Sustainable Energy Reviews 135 (August 2020):110158. doi:10.1016/j.rser.2020.110158.
  • Bashir, A. A., M. Pourakbari-Kasmaei, J. Contreras, and M. Lehtonen. 2019. A novel energy scheduling framework for reliable and economic operation of Islanded and grid-connected microgrids. Electric Power Systems Research 171 (January):85–96. doi:10.1016/j.epsr.2019.02.010.
  • Baudrit, C., D. Dubois, and D. Guyonnet. 2006. Joint propagation and exploitation of probabilistic and possibilistic information in risk assessment. IEEE Transactions on Fuzzy Systems 14 (5):593–608. doi:10.1109/TFUZZ.2006.876720.
  • Bayram, I. S., M. Abdallah, A. Tajer, and K. A. Qaraqe. 2017. A stochastic sizing approach for sharing-based energy storage applications. IEEE Transactions on Smart Grid 8 (3):1075–84. doi:10.1109/TSG.2015.2466078.
  • Belmili, H., M. Haddadi, S. Bacha, M. Fayçal Almi, and B. Bendib. 2014. Sizing stand-alone Photovoltaic-wind hybrid system: Techno-economic analysis and optimization. Renewable and Sustainable Energy Reviews 30:821–32. doi:10.1016/j.rser.2013.11.011.
  • Bortolini, M., M. Gamberi, A. Graziani, and F. Pilati. 2015. Economic and environmental Bi-objective design of an off-grid photovoltaic – battery – diesel generator hybrid energy system. Energy Conversion and Management 106:1024–38. doi:10.1016/j.enconman.2015.10.051.
  • Buechler, E., S. Powell, T. Sun, N. Astier, C. Zanocco, J. Bolorinos, J. Flora, H. Boudet, and R. Rajagopal. 2022. Global changes in electricity consumption during COVID-19. IScience 25 (1):103568. doi:10.1016/j.isci.2021.103568.
  • Cabral, C. V. T., D. O. Filho, A. S. A. C. Diniz, J. H. Martins, O. M. Toledo, and D. M. Neto. 2010. A stochastic method for stand-alone photovoltaic system sizing. Solar Energy 84 (9):1628–36. doi:10.1016/j.solener.2010.06.006.
  • Celik, A. N. 2003. Techno-economic analysis of autonomous PV-wind hybrid energy systems using different sizing methods. Energy Conversion and Management 44:1951–68. doi:10.1016/S0196-8904(02)00223-6.
  • Çelik, D., and M. Emin Meral. 2019. Current control based power management strategy for distributed power generation system. Control Engineering Practice 82 (July 2018):72–85. doi:10.1016/j.conengprac.2018.09.025.
  • Chauhan, A., and R. P. Saini. 2014. A review on integrated renewable energy system based power generation for stand-alone applications: Con Fi Gurations, storage options, sizing methodologies and control. Renewable and Sustainable Energy Reviews 38:99–120. doi:10.1016/j.rser.2014.05.079.
  • Chauhan, A., and R. P. Saini. 2017. Size optimization and demand response of a stand-alone Integrated Renewable energy system. Energy 124:59–73. doi:10.1016/j.energy.2017.02.049.
  • Chen, S. G. 2012. An efficient sizing method for a stand-alone PV system in terms of the observed block extremes. Applied Energy 91 (1):375–84. doi:10.1016/j.apenergy.2011.09.043.
  • Chen, Z., W. Lei, and F. Yong. 2012. Real-time price-based demand response management for residential appliances via stochastic optimization and robust optimization. IEEE Transactions on Smart Grid 3 (4):1822–31. doi:10.1109/TSG.2012.2212729.
  • Clúa, G., G. José, J. M. Ricardo, and H. De Battista. 2018. Optimal sizing of a grid-assisted wind-hydrogen system. Energy Conversion and Management 166 (January):402–08. doi:10.1016/j.enconman.2018.04.047.
  • Conejo, A. J., J. M. Morales, and L. Baringo. 2010. Real-time demand response model. IEEE Transactions on Smart Grid 1 (3):236–42. doi:10.1109/TSG.2010.2078843.
  • Copp, D. A., T. A. Nguyen, R. H. Byrne, and B. R. Chalamala. 2021. Optimal sizing of distributed energy resources for planning 100 % Renewable Electric power systems. Energy 239 (xxxx):122436. doi:10.1016/j.energy.2021.122436.
  • Das, B. K., N. Hoque, S. Mandal, T. Kumar, and A. Raihan. 2017. A techno-economic feasibility of a stand-alone hybrid power generation for remote area application in Bangladesh. Energy 134:775–88. doi:10.1016/j.energy.2017.06.024.
  • Deng, X., and L. Tao. 2020. Power system planning with increasing variable renewable energy: A review of optimization models. Journal of Cleaner Production 246:118962. doi:10.1016/j.jclepro.2019.118962.
  • Diaf, S., G. Notton, M. Belhamel, M. Haddadi, and A. Louche. 2008. Design and techno-economical optimization for hybrid PV/Wind system under various meteorological conditions. Applied Energy 85 (10):968–87. doi:10.1016/j.apenergy.2008.02.012.
  • Dufo, R. 2022. iHOGA Version 3.3 User’s manual, Universidad Zaragoza.
  • Dufo-López, R., and J. L. Bernal-Agustín. 2005. Design and control strategies of PV-Diesel systems using genetic algorithms. Solar Energy 79:33–46. doi:10.1016/j.solener.2004.10.004.
  • Dufo-López, R., J. L. Bernal-Agustín, and F. Mendoza. 2009. Design and economical analysis of hybrid PV–wind systems connected to the grid for the intermittent production of hydrogen. Energy Policy 37:3082–95. doi:10.1016/j.enpol.2009.03.059.
  • Dufo-López, R., I. R. Cristóbal-Monreal, and J. M. Yusta. 2016. Optimisation of PV-Wind-diesel-battery stand-alone systems to minimise cost and maximise human development index and job creation. Renewable Energy 94:280–93. doi:10.1016/j.renene.2016.03.065.
  • Egido, M., and E. Lorenzo. 1992. The sizing of stand alone PV-System: A review and a proposed new method. Solar Energy Materials and Solar Cells 26 (1–2):51–69. doi:10.1016/0927-0248(92)90125-9.
  • Ekren, O., and B. Y. Ekren. 2010. Size optimization of a PV/Wind hybrid energy conversion system with battery storage using simulated annealing. Applied Energy 87 (2):592–98. doi:10.1016/j.apenergy.2009.05.022.
  • Ekren, O., and B. Yetkin. 2008. Size optimization of a PV/Wind hybrid energy conversion system with battery storage using response surface methodology. Applied Energy 85:1086–101. doi:10.1016/j.apenergy.2008.02.016.
  • Elhadidy, M. A., and S. M. Shaahid. 2000. Parametric study of hybrid (wind + solar + diesel) power generating systems. Renewable Energy 21 (2):129–39. doi:10.1016/S0960-1481(00)00040-9.
  • Elkadeem, M. R., S. Wang, W. S. Swellam, and G. A. Eman. 2019. Feasibility analysis and techno-economic design of grid-isolated hybrid renewable energy system for electrification of agriculture and irrigation area: A case study in Dongola, Sudan. Energy Conversion and Management 196 (June):1453–78. doi:10.1016/j.enconman.2019.06.085.
  • Erdinc, O., N. G. Paterakis, I. N. Pappi, A. G. Bakirtzis, and J. P. S. Catalão. 2015. A new perspective for sizing of distributed generation and energy storage for smart households under demand response. Applied Energy 143:26–37. doi:10.1016/j.apenergy.2015.01.025.
  • Fangqiu, X., J. Liu, S. Lin, Q. Dai, and L. Cunbin. 2018. A multi-objective optimization model of hybrid energy storage system for non-grid-connected wind power: A case study in China. Energy 163:585–603. doi:10.1016/j.energy.2018.08.152.
  • Fantauzzi, M., D. Lauria, F. Mottola, and A. Scalfati. 2017. Sizing energy storage systems in DC networks: A general methodology based upon power losses minimization. Applied Energy 187:862–72. doi:10.1016/j.apenergy.2016.11.044.
  • Farges, O., J. J. Bézian, and M. El Hafi. 2018. Global optimization of solar power tower systems using a Monte Carlo algorithm: Application to a redesign of the PS10 solar thermal power plant. Renewable Energy 119:345–53. doi:10.1016/j.renene.2017.12.028.
  • Fathy, A., K. Kaaniche, and T. M. Alanazi. 2020. Recent approach based social spider optimizer for optimal sizing of hybrid PV/Wind/battery/diesel Integrated microgrid in Aljouf Region. Institute of Electrical and Electronics Engineers Access 8:57630–45. doi:10.1109/ACCESS.2020.2982805.
  • Fenglei, G., X. Tao, X. Hao, W. Chong, and N. Jingmeng 2016. An uncertainty reduction strategy to schedule and operate microgrids with renewable energy sources. In Asia-Pacific Power and Energy Engineering Conference, APPEEC. IEEE Computer Society. 10.1109/APPEEC.2016.7779681.
  • Fetanat, A., and E. Khorasaninejad. 2015. Size optimization for hybrid Photovoltaic – wind energy system using Ant colony optimization for continuous domains based integer programming. Applied Soft Computing Journal 31:196–209. doi:10.1016/j.asoc.2015.02.047.
  • Fioriti, D., G. Lutzemberger, D. Poli, P. Duenas-Martinez, and A. Micangeli. 2021. Coupling economic multi-objective optimization and multiple design options: A business-oriented approach to size an off-grid hybrid microgrid. International Journal of Electrical Power & Energy Systems 127 (November 2020):106686. doi:10.1016/j.ijepes.2020.106686.
  • Fockens, S., W. C. Turkenburg, C. Singh, and C. Singh. 1994. Application of energy based indices in generating system reliability analysis. International Journal of Electrical Power & Energy Systems 16:311–19. doi:10.1016/0142-0615(94)90035-3.
  • Fuinhas, A., M. Koengkan, and N. Silva. 2021. Assessing the advancement of new renewable energy sources in Latin American and Caribbean countries. Energy 237:237. doi:10.1016/j.energy.2021.121611.
  • Gbadamosi, S. L., and N. I. Nwulu. 2022. Optimal configuration of hybrid energy system for rural electrification of community healthcare facilities. Applied Sciences (Switzerland) 12 (9). doi: 10.3390/app12094262.
  • Ghorbani, N., A. Kasaeian, A. Toopshekan, L. Bahrami, and A. Maghami. 2018. Optimizing a hybrid wind-PV-Battery system using GA-PSO and MOPSO for reducing cost and increasing reliability. Energy 154:581–91. doi:10.1016/j.energy.2017.12.057.
  • Giallanza, A., M. Porretto, G. Li Puma, and G. Marannano. 2018. A sizing approach for stand-alone hybrid photovoltaic-wind-battery systems: A Sicilian case study. Journal of Cleaner Production 199:817–30. doi:10.1016/j.jclepro.2018.07.223.
  • Gonçalves, J. F., J. J. M. Mendes, and M. G. C. Resende. 2008. A genetic algorithm for the resource constrained multi-project scheduling problem. European Journal of Operational Research 189 (3):1171–90. doi:10.1016/j.ejor.2006.06.074.
  • Gonçalves, F., and G. Mesquita. 2010. Design optimization of stand-alone hybrid energy systems. UNIVERSIDADE DO PORTO, Portugal.
  • Greiml, M., F. Fritz, and T. Kienberger. 2021. Increasing installable photovoltaic power by implementing power-to- gas as electricity grid relief e a techno-economic assessment. Energy 235:121307. doi:10.1016/j.energy.2021.121307.
  • Grover-Silva, E., M. Heleno, S. Mashayekh, G. Cardoso, R. Girard, and G. Kariniotakis. 2018. A stochastic optimal power flow for scheduling flexible resources in microgrids operation. Applied Energy 229 (July):201–08. doi:10.1016/j.apenergy.2018.07.114.
  • Harasis, S., Y. Sozer, and M. Elbuluk. 2018. Minimizing The Expected Energy Deficiency of A Distributed Generation System Using Dynamic Optimal Power Management. 2018 IEEE Energy Conversion Congress and Exposition (ECCE), 23-27 September 2018, IEEE, Portland, OR, USA, 437–442. doi:10.1109/ECCE.2018.8558043.
  • Hassan, A., M. Saadawi, M. Kandil, and M. Saeed. 2015. Modified Particle swarm Optimisation technique for optimal design of small Renewable energy system supplying a specific load at Mansoura University. IET Renewable Power Generation 9:474–83. doi:10.1049/iet-rpg.2014.0170.
  • Hong, Y. Y., and W. Jhih Liao. 2013. Optimal passive filter planning considering probabilistic parameters using cumulant and adaptive dynamic clone selection algorithm. International Journal of Electrical Power and Energy Systems 45 (1):159–66. doi:10.1016/j.ijepes.2012.08.061.
  • Hua, Z., M. Chao, J. Lian, X. Pang, and W. Yang. 2019. Optimal capacity allocation of multiple solar trackers and storage capacity for utility-scale photovoltaic plants considering output characteristics and complementary demand. Applied Energy 238 (January):721–33. doi:10.1016/j.apenergy.2019.01.099.
  • Hu, J., X. Liu, M. Shahidehpour, and S. Xia. 2021. Optimal operation of energy hubs with large-scale distributed energy resources for distribution network congestion Management. IEEE Transactions on Sustainable Energy 12 (3):1755–65. doi:10.1109/TSTE.2021.3064375.
  • IEA. 2021a. Global energy review 2021, IEA, Paris n.d. https://www.iea.org/reports/global-energy-review-2021.
  • IEA. 2021b. India energy outlook 2021, IEA, Paris n.d. https://www.iea.org/reports/india-energy-outlook-2021.
  • International Renewable Energy Agency. n.d. Accessed July 14, 2022. https://www.irena.org/.
  • Jacob, A. S., R. Banerjee, and P. C. Ghosh. 2018. Sizing of hybrid energy storage system for a PV based microgrid through design space approach. Applied Energy 212 (September 2017):640–53. doi:10.1016/j.apenergy.2017.12.040.
  • Jahangir, M. H., and R. Cheraghi. 2020. Economic and environmental assessment of solar-wind-biomass hybrid renewable energy system supplying rural settlement load. Sustainable Energy Technologies and Assessments 42 (June):100895. doi:10.1016/j.seta.2020.100895.
  • Jakhrani, A. Q., A. Khalid Othman, A. Ragai Henry Rigit, S. Raza Samo, and S. Ahmed Kamboh. 2012. A novel analytical model for optimal sizing of standalone photovoltaic systems. Energy 46:675–82. doi:10.1016/j.energy.2012.05.020.
  • Jamshidi, S., K. Pourhossein, and M. Asadi. 2021. Size estimation of wind/solar hybrid Renewable energy systems without detailed wind and irradiation data: A feasibility study. Energy Conversion and Management 234 (January):113905. doi:10.1016/j.enconman.2021.113905.
  • Javed, M. S., and T. Ma. 2019. Techno-economic assessment of a hybrid solar-wind-battery system with genetic algorithm. Energy Procedia 158:6384–92. doi:10.1016/j.egypro.2019.01.211.
  • Javed, M. S., A. Song, and M. Tao. 2019. Techno-economic assessment of a stand-alone hybrid solar-wind-battery system for a remote Island using genetic algorithm. Energy 176:704–17. doi:10.1016/j.energy.2019.03.131.
  • Jayachandran, M., and G. Ravi. 2017. Design and optimization of hybrid micro-grid system.Pdf. Energy Procedia 117:95–103. doi:10.1016/j.egypro.2017.05.111.
  • Kaabeche, A., and Y. Bakelli. 2019. Renewable hybrid system size optimization considering various electrochemical energy storage technologies. Energy Conversion and Management 193 (January):162–75. doi:10.1016/j.enconman.2019.04.064.
  • Kaabeche, A., M. Belhamel, and R. Ibtiouen. 2011. Sizing optimization of grid-independent hybrid photovoltaic/wind power generation system. Energy 36 (2):1214–22. doi:10.1016/j.energy.2010.11.024.
  • Kaabeche, A., and R. Ibtiouen. 2014. Techno-economic optimization of hybrid photovoltaic/wind/diesel/battery generation in a stand-alone power system. Solar Energy 103:171–82. doi:10.1016/j.solener.2014.02.017.
  • Kalantar-Neyestanaki, M., and R. Cherkaoui. 2021. Coordinating distributed energy resources and utility-scale battery energy storage system for power flexibility provision under uncertainty. IEEE Transactions on Sustainable Energy 12 (4):1853–63. doi:10.1109/TSTE.2021.3068630.
  • Kaldellis, J. K. 2010. Optimum hybrid photovoltaic-based solution for remote telecommunication stations. Renewable Energy 35 (10):2307–15. doi:10.1016/j.renene.2010.03.029.
  • Kaldellis, J. K., D. Zafirakis, and E. Kondili. 2010. Optimum sizing of photovoltaic-energy storage systems for autonomous small Islands. International Journal of Electrical Power and Energy Systems 32 (1):24–36. doi:10.1016/j.ijepes.2009.06.013.
  • Kamel, S., C. Dahl, and B. Sun. 2005. The economics of hybrid power systems for sustainable desert agriculture in Egypt. Zhongguo Zhong Yao Za Zhi = Zhongguo Zhongyao Zazhi = China Journal of Chinese Materia Medica 30:1271–74. doi:10.1016/j.energy.2004.02.004.
  • Kamjoo, A., A. Maheri, A. M. Dizqah, and G. A. Putrus. 2016. Electrical power and energy systems multi-objective design under uncertainties of hybrid renewable energy system using NSGA-II and chance constrained programming. International Journal of Electrical Power and Energy Systems 74:187–94. doi:10.1016/j.ijepes.2015.07.007.
  • Katsigiannis, Y. A., P. S. Georgilakis, and E. S. Karapidakis. 2012. Hybrid simulated annealing-tabu search method for optimal sizing of autonomous power systems with renewables. IEEE Transactions on Sustainable Energy 3 (3):330–38. doi:10.1109/TSTE.2012.2184840.
  • Kavousi-Fard, A., and T. Niknam. 2014. Optimal distribution feeder reconfiguration for reliability improvement considering uncertainty. IEEE Transactions on Power Delivery 29 (3):1344–53. doi:10.1109/TPWRD.2013.2292951.
  • Kazem, H. A., T. Khatib, and K. Sopian. 2013. Sizing of a standalone photovoltaic/battery system at minimum cost for remote housing electrification in Sohar, Oman. Energy & Buildings 61:108–15. doi:10.1016/j.enbuild.2013.02.011.
  • Keck, F., S. Jütte, M. Lenzen, and L. Mengyu. 2022. Assessment of two optimisation methods for renewable energy capacity expansion planning. Applied Energy 306 (PA):117988. doi:10.1016/j.apenergy.2021.117988.
  • Kendrick, L., J. Pihl, I. Weinstock, and S. Sridharan. 2003. HybSim 3. 3 - hybrid generation simulator model. https://www.sandia.gov/files/ess/EESAT/2003_papers/Kendrick.pdf.
  • Khan, F. A., N. Pal, and S. H. Saeed. 2018. Review of solar photovoltaic and wind hybrid energy systems for sizing strategies optimization techniques and cost analysis methodologies. Renewable and Sustainable Energy Reviews 92 (April):937–47. doi:10.1016/j.rser.2018.04.107.
  • Khan, F. A., N. Pal, and S. H. Saeed. 2021. Optimization and sizing of SPV/Wind hybrid renewable energy system: A techno-economic and social perspective hybrid optimization of multiple energy resources. Energy 233:121114. doi:10.1016/j.energy.2021.121114.
  • Khare, R., and Y. Kumar. 2016. A novel hybrid MOL-TLBO optimized techno-economic-socio analysis of renewable energy mix in Island mode. Applied Soft Computing Journal 43:187–98. doi:10.1016/j.asoc.2016.02.044.
  • Khatib, T., I. A. Ibrahim, and A. Mohamed. 2016. A review on sizing methodologies of photovoltaic array and storage battery in a standalone photovoltaic system. Energy Conversion and Management 120:430–48. doi:10.1016/j.enconman.2016.05.011.
  • Khiareddine, A., C. Ben Salah, D. Rekioua, and M. Faouzi Mimouni. 2018. Sizing methodology for hybrid photovoltaic/wind/hydrogen/battery integrated to energy management strategy for pumping system. Energy 153:743–62. doi:10.1016/j.energy.2018.04.073.
  • Klise, G. T., and J. S. Stein. 2009. Models Used to Assess the Performance of Photovoltaic Systems. SAND2009-8258, USA, Sandia National Laboratories. https://www.osti.gov/servlets/purl/974415.
  • Koj, J. C., C. Wulf, J. Linssen, A. Schreiber, and P. Zapp. 2018. Utilisation of excess electricity in different power-to-transport chains and their environmental assessment. Transportation Research Part D 64 (November 2016):23–35. doi:10.1016/j.trd.2018.01.016.
  • Kolakaluri, V. K., C. Vyjayanthi, and S. Mikkili. 2019. PV-Battery hybrid system with less AH capacity for standalone DC loads. International Journal of Emerging Electric Power Systems 20 (4):1–14. doi:10.1515/ijeeps-2019-0011.
  • Kornelakis, A., and Y. Marinakis. 2010. Contribution for optimal sizing of grid-connected PV-Systems using PSO. Renewable Energy 35 (6):1333–41. doi:10.1016/j.renene.2009.10.014.
  • Kroposki, B. 2017. Integrating high levels of variable renewable energy into electric power systems. Journal of Modern Power Systems and Clean Energy 5 (6):831–37. doi:10.1007/s40565-017-0339-3.
  • Kumar, N. M., S. S. Chopra, A. A. Chand, R. M. Elavarasan, and G. M. Shafiullah. 2020. Hybrid renewable energy microgrid for a residential community: A techno-economic and environmental perspective in the context of the SDG7. Sustainability 12 (10):1–30. doi:10.3390/su12103944.
  • Kumar, R., and H. Kaur Channi. 2022. A PV-biomass off-grid hybrid renewable energy system (HRES) for rural electrification: Design, optimization and techno-economic-environmental analysis. Journal of Cleaner Production 349 (March):131347. doi:10.1016/j.jclepro.2022.131347.
  • Kumar, A., S. Maisanam, A. Biswas, and K. Kumar Sharma. 2021. Integrated socio-environmental and techno-economic factors for designing and sizing of a sustainable hybrid renewable energy system. Energy Conversion and Management 247:114709. doi:10.1016/j.enconman.2021.114709.
  • Lago, C., N. Caldés, and Y. Lechón. 2019. The role of bioenergy in the bioeconomy: Resources, technologies, sustainability and policy. Academic Press. doi:10.1016/C2016-0-03740-3.
  • Lata-García, J., and P. Jackson. 2021. Optimal model of a hybrid electrical system photovoltaic panel/wind turbine/battery bank, considering the feasibility of implementation in isolated areas. Journal of Energy Storage 36 (February):1–6. doi:10.1016/j.est.2021.102368.
  • Lazou, A. A., and A. D. Papatsoris. 2000. The economics of photovoltaic stand-alone residential households: A case study for various European and Mediterranean locations. Solar Energy Materials and Solar Cells 62 (4):411–27. doi:10.1016/S0927-0248(00)00005-2.
  • Lian, J., Y. Zhang, M. Chao, Y. Yang, and E. Chaima. 2019. A review on recent sizing methodologies of hybrid Renewable energy systems. Energy Conversion and Management 199:112027. doi:10.1016/j.enconman.2019.112027.
  • Liao, S., H. Liu, B. Liu, H. Zhao, and M. Wang. 2022. An information gap decision theory-based decision-making model for complementary operation of hydro-wind-solar system considering wind and solar output uncertainties. Journal of Cleaner Production 348 (October 2021):131382. doi:10.1016/j.jclepro.2022.131382.
  • Li, T., M. Dong, and S. Member. 2019. Residential energy storage management with bidirectional energy control. IEEE Transactions on Smart Grid 10 (4):3596–611. doi:10.1109/TSG.2018.2832621.
  • Li, C., Z. Lin, F. Qiu, and R. Fu. 2022. Optimization and enviro-economic assessment of hybrid sustainable energy systems: The case study of a Photovoltaic/Biogas/diesel/battery system in Xuzhou, China. Energy Strategy Reviews 41 (December 2021):100852. doi:10.1016/j.esr.2022.100852.
  • Lin, X., X. Ruan, C. Mao, B. Zhang, and Y. Luo. 2013. An improved optimal sizing method for wind-solar-battery hybrid power system. IEEE Transactions on Sustainable Energy 4 (3):774–85. doi:10.1109/TSTE.2012.2228509.
  • Li, X., L. Yuzeng, and S. Zhang. 2008. Analysis of probabilistic optimal power flow taking account of the variation of load power. IEEE Transactions on Power Systems 23 (3):992–99. doi:10.1109/TPWRS.2008.926437.
  • Loganathan, B., H. Chowdhury, I. Mustary, S. Mahmud Sony, M. Masud Rana, and F. Alam. 2019. Design of hybrid houseshold power generation system for a rural area: A case study for Oodnadatta, Australia. Energy Procedia 160 (2018):827–33. doi:10.1016/j.egypro.2019.02.151.
  • Lopes, V. S., and C. L. T. Borges. 2015. Impact of the combined Integration of wind generation and small hydropower plants on the system reliability. IEEE Transactions on Sustainable Energy 6 (3):1169–77. doi:10.1109/TSTE.2014.2335895.
  • Luna-Rubio, R., M. Trejo-Perea, D. Vargas-Vázquez, and G. J. Ríos-Moreno. 2012. Optimal sizing of renewable hybrids energy systems: A review of methodologies. Solar Energy 86:1077–88. doi:10.1016/j.solener.2011.10.016.
  • Lund, H., F. Arler, P. Alberg Østergaard, F. Hvelplund, D. Connolly, B. Vad Mathiesen, and P. Karnøe. 2017. Simulation versus optimisation. Theoretical Positions in Energy System Modelling 10:1–17. doi:10.3390/en10070840.
  • Maintaining Electric reliability with wind and solar sources: Background and issues for congress maintaining electric reliability with wind and solar sources: background and issues for congress. 2019.
  • Makhdoomi, S., and A. Askarzadeh. 2021. Impact of solar tracker and energy storage system on sizing of hybrid energy systems: A comparison between diesel/PV/PHS and diesel/PV/FC. Energy 231:120920. doi:10.1016/j.energy.2021.120920.
  • Maleki, A., M. Ameri, and F. Keynia. 2015. Scrutiny of Multifarious Particle swarm optimization for Fi Nding the optimal size of a PV/Wind/battery hybrid system. Renewable Energy 80:552–63. doi:10.1016/j.renene.2015.02.045.
  • Maleki, A., and A. Askarzadeh. 2014. Optimal sizing of a PV/Wind/diesel system with battery storage for electrification to an off-grid remote region: A case study of Rafsanjan, Iran. Sustainable Energy Technologies and Assessments 7:147–53. doi:10.1016/j.seta.2014.04.005.
  • Mamaghani, A. H., S. A. A. Escandon, B. Najafi, A. Shirazi, and F. Rinaldi. 2016. Techno-economic feasibility of photovoltaic, wind, diesel and hybrid electrification systems for off-grid rural electrification in Colombia. Renewable Energy 97:293–305. doi:10.1016/j.renene.2016.05.086.
  • Manwell, J. F., A. Rogers, G. Hayman, C. T. Avelar, and J. G. McGowan. 1998. Hybrid2: A Hybrid System Simulation Model: Theory Manual, 236. National Renewable Energy Laboratory.
  • Marchenko, O. V., and S. V. Solomin. 2017. Modeling of hydrogen and electrical energy storages in wind/PV energy system on the Lake Baikal Coast. International Journal of Hydrogen Energy 42 (15):9361–70. doi:10.1016/j.ijhydene.2017.02.076.
  • Ma, T., and M. Shahzad Javed. 2019. Integrated sizing of hybrid PV-Wind-battery system for remote Island considering the saturation of each renewable energy resource. Energy Conversion and Management 182 (January):178–90. doi:10.1016/j.enconman.2018.12.059.
  • Mayer, M. J., A. Szilágyi, and G. Gróf. 2020. Environmental and economic multi-objective optimization of a household level hybrid renewable energy system by genetic algorithm. Applied Energy 269 (May):115058. doi:10.1016/j.apenergy.2020.115058.
  • Merei, G., C. Berger, and D. Uwe Sauer. 2013. Optimization of an off-grid hybrid PV-Wind-diesel system with different battery technologies using genetic algorithm. Solar Energy 97:460–73. doi:10.1016/j.solener.2013.08.016.
  • Mieth, R., and Y. Dvorkin. 2018. Data-driven distributionally robust optimal power flow for distribution systems. IEEE Control Systems Letters 2 (3):363–68. doi:10.1109/LCSYS.2018.2836870.
  • Mirzaei, M. A., A. Sadeghi-Yazdankhah, B. Mohammadi-Ivatloo, M. Marzband, M. Shafie-Khah, and J. P. S. Catalão. 2019. Integration of emerging resources in IGDT-Based robust scheduling of combined power and natural gas systems considering flexible ramping products. Energy 189. doi:10.1016/j.energy.2019.116195.
  • Miyatake, M., F. Toriumi, T. Endo, and N. Fujii. 2007. A Novel Maximum Power Point Tracker Controlling Several Converters Connected to Photovoltaic Arrays with Particle Swarm Optimization Technique. 2007 European Conference on Power Electronics and Applications, Aalborg, Denmark, 02-05 September 2007, IEEE, 1–10. doi:10.1109/EPE.2007.4417640.
  • Modarresi, M. S., L. Xie, Student Member, Senior Member, M. C. Campi, S. Garatti, A. Car, A. A. Thatte, P. R. Kumar. 2019. Scenario-based economic dispatch with tunable risk levels in high-renewable power systems. IEEE Transactions on Power Systems 34 (6):5103–14. doi:10.1109/TPWRS.2018.2874464.
  • Mohamed, A. F., M. M. Elarini, and A. M. Othman. 2014. A new technique based on artificial bee colony algorithm for optimal sizing of stand-alone photovoltaic system. Journal of Advanced Research 5 (3):397–408. doi:10.1016/j.jare.2013.06.010.
  • Mohamed, M. A., A. M. Eltamaly, and A. I. Alolah. 2017. Swarm intelligence-based optimization of grid-dependent hybrid renewable energy systems. Renewable and Sustainable Energy Reviews 77 (February 2016):515–24. doi:10.1016/j.rser.2017.04.048.
  • Mohammadi, S., B. Mozafari, S. Solimani, and T. Niknam. 2013. An adaptive modified firefly optimisation algorithm based on hong’s point estimate method to optimal operation management in a microgrid with consideration of uncertainties. Energy 51:339–48. doi:10.1016/j.energy.2012.12.013.
  • Mohammadi, M., Y. Noorollahi, and B. Mohammadi-Ivatloo. 2020. Fuzzy-based scheduling of wind Integrated multi-energy systems under Multiple uncertainties. Sustainable Energy Technologies and Assessments 37 (November 2019):100602. doi:10.1016/j.seta.2019.100602.
  • Mohammed, Y. S., M. W. Mustafa, and N. Bashir. 2014. Hybrid renewable energy systems for off-grid electric power: Review of substantial issues. Renewable and Sustainable Energy Reviews 35:527–39. doi:10.1016/j.rser.2014.04.022.
  • Mohseni, M., S. Farhan Moosavian, and A. Hajinezhad. 2022. Feasibility evaluation of an off‐grid solar‐biomass system for remote area electrification considering various economic factors. Energy Science and Engineering 10:3091–107. doi:10.1002/ese3.1202.
  • Mokarram, M. J., M. Gitizadeh, T. Niknam, and S. Niknam. 2019. Robust and effective parallel process to coordinate Multi-Area Economic Dispatch (MAED) problems in the presence of uncertainty. IET Generation, Transmission and Distribution 13 (18):4197–205. doi:10.1049/iet-gtd.2019.0319.
  • Mokhtara, C., B. Negrou, N. Settou, B. Settou, and M. Mahmoud. 2021. Design optimization of off-grid hybrid renewable energy systems considering the effects of building energy performance and climate change: Case study of Algeria. Energy 219:119605. doi:10.1016/j.energy.2020.119605.
  • Mondol, J. D., Y. G. Yohanis, and B. Norton. 2009. Optimising the economic viability of grid-connected photovoltaic systems. Applied Energy 86:985–99. doi:10.1016/j.apenergy.2008.10.001.
  • Murugaperumal, K., and P. Ajay D Vimal. 2019. Feasibility design and techno-economic analysis of hybrid renewable energy system for rural electrification. Solar Energy 188 (February):1068–83. doi:10.1016/j.solener.2019.07.008.
  • Nadjemi, O., T. Nacer, A. Hamidat, and H. Salhi. 2017. Optimal hybrid PV/Wind energy system sizing: Application of Cuckoo search algorithm for Algerian Dairy Farms. Renewable and Sustainable Energy Reviews 70 (December 2016):1352–65. doi:10.1016/j.rser.2016.12.038.
  • Nagapurkar, P., and J. D. Smith. 2019. Techno-economic optimization and environmental life cycle assessment (LCA) of microgrids located in the US using genetic algorithm. Energy Conversion and Management 181 (November 2018):272–91. doi:10.1016/j.enconman.2018.11.072.
  • Najafi-Ghalelou, A., S. Nojavan, and K. Zare. 2018. Heating and power hub models for robust performance of smart building using information gap decision theory. International Journal of Electrical Power & Energy Systems 98 (December 2017):23–35. doi:10.1016/j.ijepes.2017.11.030.
  • Nasr, M. A., E. Nasr-Azadani, H. Nafisi, S. Hossein Hosseinian, and P. Siano. 2020. Assessing the effectiveness of weighted information gap decision theory integrated with energy management systems for isolated microgrids. IEEE Transactions on Industrial Informatics 16 (8):5286–99. doi:10.1109/TII.2019.2954706.
  • Neto, D. P., E. G. Domingues, A. Paulo Coimbra, A. T. de Almeida, A. José Alves, and W. Pacheco Calixto. 2017. Portfolio optimization of renewable energy assets: Hydro, wind, and photovoltaic energy in the regulated market in Brazil. Energy Economics 64:238–50. doi:10.1016/j.eneco.2017.03.020.
  • Nikhil, P. G., and D. Subhakar. 2013. Sizing and parametric analysis of a stand-alone photovoltaic power plant. IEEE Journal of Photovoltaics 3 (2):776–84. doi:10.1109/JPHOTOV.2013.2247792.
  • Nogueira, W. C., L. Paola Garcés Negrete, and J. M. López-Lezama. 2021. Interval load flow for uncertainty consideration in power systems analysis. Energies 14 (3):1–14. doi:10.3390/en14030642.
  • Ogunjuyigbe, A. S. O., T. R. Ayodele, and O. A. Akinola. 2016. Optimal allocation and sizing of PV/Wind/Split-diesel/Battery hybrid energy system for minimizing life cycle cost, carbon emission and dump energy of remote residential building. Applied Energy 171:153–71. doi:10.1016/j.apenergy.2016.03.051.
  • Omer, A. M. 2008. Renewable building energy systems and passive human comfort solutions. Renewable and Sustainable Energy Reviews 12 (6):1562–87. doi:10.1016/j.rser.2006.07.010.
  • Paichaure, G., and A. Pandya. 2019. Hybrid system of Photovoltaic-battery-super capacitor and control for isolated DC load. SSRN Electronic Journal. doi:10.2139/ssrn.3442543.
  • Paliwal, P., N. P. Patidar, and R. K. Nema. 2014. Determination of reliability constrained optimal resource mix for an autonomous hybrid power system using particle swarm optimization. Renewable Energy 63:194–204. doi:10.1016/j.renene.2013.09.003.
  • Papaefthymiou, G., P. H. Schavemaker, L. Van Der Sluis, W. L. Kling, D. Kurowicka, and R. M. Cooke. 2006. Integration of stochastic generation in power systems. International Journal of Electrical Power & Energy Systems 28:655–67. doi:10.1016/j.ijepes.2006.03.004.
  • Patel, M. S., and T. L. Pryor. 2001. Monitored performance data from a hybrid RAPS system and the determination of control set points for simulation studies. In Proceedings of the ISES 2001 Solar World Congress. Adelaide, Australia.
  • Peng, W., A. Maleki, M. A. Rosen, and P. Azarikhah. 2008. Optimization of a hybrid system for solar-wind-based water desalination by reverse osmosis: Comparison of approaches Desalination 442, 16–31. doi:10.1016/j.desal.2018.03.021.
  • Perera, A. T. D., R. A. Attalage, K. K. C. K. Perera, and V. P. C. Dassanayake. 2013. A hybrid tool to combine multi-objective optimization and multi-criterion decision making in designing standalone hybrid energy systems. Applied Energy 107:412–25. doi:10.1016/j.apenergy.2013.02.049.
  • Posadillo, R., and R. López Luque. 2008. Approaches for developing a sizing method for stand-alone PV systems with variable demand. Renewable Energy 33 (5):1037–48. doi:10.1016/j.renene.2007.06.004.
  • Pourmohammadi, P. 2021. A Robust Simulation-optimization Approach For Designing Hybrid Renewable Energy Systems. Dalhousie University, Canada. http://hdl.handle.net/10222/80958.
  • Prasanna, U. R., and K. Rajashekara. 2015. “Fuel cell based hybrid power generation strategies for microgrid applications.” IEEE Industry Application Society - 51st Annual Meeting, IAS 2015, Conference Record, 1–7. 10.1109/IAS.2015.7356785.
  • Preece, R., K. Huang, and J. V. Milanović. 2014. Probabilistic small-disturbance stability assessment of uncertain power systems using efficient estimation methods. IEEE Transactions on Power Systems 29 (5):2509–17. doi:10.1109/TPWRS.2014.2308577.
  • Rabiee, A., A. Soroudi, and A. Keane. 2015. Information gap decision theory based OPF with HVDC connected wind farms. IEEE Transactions on Power Systems 30 (6):3396–406. doi:10.1109/TPWRS.2014.2377201.
  • Rajanna, S., and R. P. Saini. 2016a. Development of optimal integrated renewable energy model with battery storage for a remote Indian area. Energy 111:803–17. doi:10.1016/j.energy.2016.06.005.
  • Rajanna, S., and R. P. Saini. 2016b. Modeling of integrated renewable energy system for electrification of a remote area in India. Renewable Energy 90 (2016):175–87. doi:10.1016/j.renene.2015.12.067.
  • Razmjoo, A., and A. Davarpanah. 2019. Developing various hybrid energy systems for residential application as an appropriate and reliable way to achieve energy sustainability. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 41 (10):1180–93. doi:10.1080/15567036.2018.1544996.
  • Ren, J., and S. Toniolo. 2020. Life cycle Sustainability assessment for decision-making: Methodologies and case studies. Elsevier. doi:10.1016/C2018-0-02095-2.
  • Sajadi, A., K. Loparo, Ł. Roslaniec, and M. Kłos. 2019. “Power sharing based control of hybrid wind-diesel standalone systems.” In IEEE EUROCON 2019 -18th International Conference on Smart Technologies, 1–5. 10.1109/EUROCON.2019.8861981.
  • Saltelli, A., K. Aleksankina, W. Becker, P. Fennell, F. Ferretti, N. Holst, L. Sushan, and W. Qiongli. 2019. Why so many published sensitivity analyses are false: A systematic review of sensitivity analysis practices. Environmental Modelling & Software 114 (March 2018):29–39. doi:10.1016/j.envsoft.2019.01.012.
  • Saltelli, A., and P. Annoni. 2010. How to avoid a perfunctory sensitivity analysis. Environmental Modelling and Software 25 (12):1508–17. doi:10.1016/j.envsoft.2010.04.012.
  • Saltelli, A., M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana, and S. Tarantola. 2008. Global sensitivity analysis: The primer, Vol. 76. John Wiley & Sons, Ltd. doi:10.1002/9780470725184.
  • Samy, M. M., I. E. Heba, and S. Barakat. 2021. Multi-objective optimization of hybrid renewable energy system based on biomass and fuel cells. International Journal of Energy Research 45 (6):8214–30. doi:10.1002/er.5815.
  • Sanajaoba, S., and E. Fernandez. 2016. Maiden application of Cuckoo search algorithm for optimal sizing of a remote hybrid renewable energy system. Renewable Energy 96:1–10. doi:10.1016/j.renene.2016.04.069.
  • Sayigh, A. 2012. Comprehensive Renewable energy. 1st ed., 4422. Amsterdam: Elsevier .
  • Schmidt, J., R. Cancella, and A. O. Pereira. 2016. An optimal mix of solar PV, wind and hydro power for a low-carbon electricity supply in Brazil. Renewable Energy 85 (2016):137–47. doi:10.1016/j.renene.2015.06.010.
  • Seeling-Hochmuth, G. C. 1997. A combined optimisation concept for the design and operation strategy of hybrid-PV energy systems. Solar Energy 61 (2):77–87. doi:10.1016/S0038-092X(97)00028-5.
  • Shahzad, M., M. Tao, J. Jurasz, F. A. Canales, S. Lin, S. Ahmed, and Y. Zhang. 2021. Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote Island. Renewable Energy 164:1376–94. doi:10.1016/j.renene.2020.10.063.
  • Shaner, M. R., K. Caldeira, S. J. Davis, and N. S. Lewis. 2018. Environmental science geophysical constraints on the reliability of solar and wind power in the United States †. Energy & Environmental Science 11:914–25. doi:10.1039/c7ee03029k.
  • Sharafi, M., and T. Y. Elmekkawy. 2015. “Stochastic optimization of hybrid renewabe energy systems.” Proceedings of the ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, August 2–5, 2015, Boston, Massachusetts, USA, 4, ASME, 1–10. doi:10.1115/DETC2015-46181.
  • Sharma, A., M. Dharwal, and T. Kumari. 2022. “Materials Today: Proceedings Renewable energy for Sustainable development: A comparative study of India and China.” Materials Today: Proceedings 60: 788–90. 10.1016/j.matpr.2021.09.242.
  • Sharma, R., H. Kodamana, and M. Ramteke. 2022. Chemical engineering and processing - process intensification multi-objective dynamic optimization of hybrid renewable energy systems. Chemical Engineering & Processing - Process Intensification 170 (October 2021):108663. doi:10.1016/j.cep.2021.108663.
  • Siddaiah, R., and R. P. Saini. 2016. A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications. Renewable and Sustainable Energy Reviews 58:376–96. doi:10.1016/j.rser.2015.12.281.
  • Singh, S., P. Chauhan, and N. Jap Singh. 2021. Feasibility of grid-connected solar-wind hybrid system with electric vehicle charging station. Journal of Modern Power Systems and Clean Energy 9 (2):295–306. doi:10.35833/MPCE.2019.000081.
  • Singh, S. S., and E. Fernandez. 2018. Modeling, size optimization and sensitivity analysis of a remote hybrid renewable energy system. Energy 143:719–31. doi:10.1016/j.energy.2017.11.053.
  • Singh, S., M. Singh, and S. Chandra Kaushik. 2016. Feasibility study of an Islanded microgrid in rural area consisting of PV, wind, biomass and battery energy storage system. Energy Conversion and Management 128:178–90. doi:10.1016/j.enconman.2016.09.046.
  • Sinha, S., and S. S. Chandel. 2014. Review of software tools for hybrid renewable energy systems. Renewable and Sustainable Energy Reviews 32:192–205. doi:10.1016/j.rser.2014.01.035.
  • Sinha, S., and S. S. Chandel. 2015. Review of recent trends in optimization techniques for solar photovoltaic-wind based hybrid energy systems. Renewable and Sustainable Energy Reviews 50:755–69. doi:10.1016/j.rser.2015.05.040.
  • Siram, O., N. Sahoo, and U. K. Saha. 2022. Changing landscape of India’s renewable energy and the contribution of wind energy. Cleaner Engineering and Technology 8 (May 2021):100506. doi:10.1016/j.clet.2022.100506.
  • Somma, M., G. G. Di, E. Heydarian-Forushani, M. Shafie-Khah, and P. Siano. 2018. Stochastic optimal scheduling of distributed energy resources with renewables considering economic and environmental aspects. Renewable Energy 116:272–87. doi:10.1016/j.renene.2017.09.074.
  • Soroudi, A. 2012. Possibilistic-scenario model for DG impact assessment on distribution networks in an uncertain environment. IEEE Transactions on Power Systems 27 (3):1283–93. doi:10.1109/TPWRS.2011.2180933.
  • Soroudi, A., and M. Ehsan. 2011. A possibilistic-probabilistic tool for evaluating the impact of stochastic renewable and controllable power generation on energy losses in distribution networks - a case study. Renewable and Sustainable Energy Reviews 15 (1):794–800. doi:10.1016/j.rser.2010.09.035.
  • Soumya, M., B. K. Das, and N. Hoque. 2018. Optimum sizing of a stand-alone hybrid energy system for rural electrification in. Bangladesh Journal of Cleaner Production 200:12–27 09596526. doi:10.1016/j.jclepro.2018.07.257.
  • Spencer, T., N. Rodrigues, R. Pachouri, S. Thakre, and G. Renjith. 2020. Renewable Power Pathways: Modelling The Integration Of Wind And Solar In India By 2030, New Delhi, The Energy and Resources Institute (TERI).
  • Spertino, F., P. Di Leo, V. Cocina, and G. M. Tina. 2012. Storage sizing procedure and experimental verification of stand-alone photovoltaic systems. 2012 IEEE International Energy Conference and Exhibition, ENERGYCON 2012, 464–68. 10.1109/EnergyCon.2012.6348199.
  • Stevanović, S., and M. Pucar. 2012. Investment appraisal of a small, grid-connected photovoltaic plant under the Serbian feed-in tariff framework. Renewable and Sustainable Energy Reviews 16 (3):1673–82. doi:10.1016/j.rser.2011.11.036.
  • Suhane, P., S. Rangnekar, A. Mittal, and A. Khare. 2016. Sizing and performance analysis of standalone wind-photovoltaic based hybrid energy system using ant colony optimisation. IET Renewable Power Generation 10:964–72. doi:10.1049/iet-rpg.2015.0394.
  • Suresh, V., M. Muralidhar, and R. Kiranmayi. 2020. Modelling and optimization of an off-grid hybrid renewable energy system for electrification in a rural areas. Energy Reports 6:594–604. doi:10.1016/j.egyr.2020.01.013.
  • Talari, S., M. Yazdaninejad, and M. Reza Haghifam. 2015. Stochastic-based scheduling of the microgrid operation including wind turbines, photovoltaic cells, energy storages and responsive loads. IET Generation, Transmission and Distribution 9 (12):1498–509. doi:10.1049/iet-gtd.2014.0040.
  • Tamal, C., H. Chowdhury, S. Hasan, M. M. K. B. Md Salman Rahman, P. Chowdhury, and P. Chowdhury. 2021. Design of a stand-alone energy hybrid system for a makeshift health care center: A case study. Journal of Building Engineering 40 (August 2020):102346. doi:10.1016/j.jobe.2021.102346.
  • Tezer, T., R. Yaman, and G. Yaman. 2017. Evaluation of approaches used for optimization of stand-alone hybrid renewable energy systems. Renewable and Sustainable Energy Reviews 73 (June 2016):840–53. doi:10.1016/j.rser.2017.01.118.
  • Tharani, K. L., and R. Dahiya. 2018. Choice of battery energy storage for a hybrid renewable energy system. Turkish Journal of Electrical Engineering and Computer Sciences 26 (2):666–76. doi:10.3906/elk-1707-350.
  • Tian, Z., and A. Ahmad Seifi. 2014. Reliability analysis of hybrid energy system. International Journal of Reliability, Quality & Safety Engineering 21 (3):1–9. doi:10.1142/S0218539314500119.
  • Tina, G., and S. Gagliano. 2011. Probabilistic analysis of weather data for a hybrid solar/wind energy system. International Journal of Energy Research 35 (3):221–32. doi:10.1002/er.1686.
  • Tina, G., S. Gagliano, and S. Raiti. 2006. Hybrid solar/wind power system probabilistic Modelling for long-term performance assessment. Solar Energy 80 (5):578–88. doi:10.1016/j.solener.2005.03.013.
  • Tiwari, R., and Y. Sharma. 2022. Materials today: Proceedings public policies to promote renewable energy technologies: Learning from Indian experiences. Materials Today: Proceedings 49:366–71. doi:10.1016/j.matpr.2021.02.251.
  • Upadhyay, S., and M. P. Sharma. 2014. A review on configurations, control and sizing methodologies of hybrid energy systems. Renewable and Sustainable Energy Reviews 38:47–63. doi:10.1016/j.rser.2014.05.057.
  • Vallée, F., C. Versèle, J. Lobry, and F. Moiny. 2013. Non-sequential Monte Carlo simulation tool in order to minimize gaseous pollutants emissions in presence of fluctuating wind power. Renewable Energy 50:317–24. doi:10.1016/j.renene.2012.06.046.
  • Verbicˇ, G., and C. A. Cañizares. 2006. Probabilistic optimal power flow in electricity markets based on a two-point estimate method. IEEE Transactions on Power Systems 21 (4):1883–93. doi:10.1109/TPWRS.2006.881146.
  • Wang, Y., J. Cheng, N. Zhang, and C. Kang. 2018. Automatic and linearized modeling of energy hub and its flexibility analysis. Applied Energy 211 (July 2017):705–14. doi:10.1016/j.apenergy.2017.10.125.
  • Wang, R., L. Guozheng, M. Ming, W. Guohua, and L. Wang. 2017. An efficient multi-objective model and algorithm for sizing a stand-alone hybrid renewable energy system. Energy 141:2288–99. doi:10.1016/j.energy.2017.11.085.
  • Wang, F., X. Jiuping, L. Liu, G. Yin, J. Wang, and J. Yan. 2021. Optimal design and operation of hybrid renewable energy system for drinking water treatment. Energy 219:119673. doi:10.1016/j.energy.2020.119673.
  • Xie, K., J. Dong, H.-M. Tai, B. Hu, and H. Hailei. 2016. Optimal planning of HVDC-based bundled wind – thermal generation and transmission system. Energy Conversion and Management 115:71–79. doi:10.1016/j.enconman.2016.02.025.
  • Xing, W., H. Wang, L. Languang, X. Han, K. Sun, and M. Ouyang. 2021. An adaptive virtual inertia control strategy for distributed battery energy storage system in microgrids. Energy 233:121155. doi:10.1016/j.energy.2021.121155.
  • Yahyaoui, I. 2018. Advances in Renewable Energies and power technologies volume 2: biomass, fuel cells, geothermal energies, and smart grids. Elsevier Science. doi:10.1016/C2016-0-04919-7.
  • Yahyaoui, I., A. Atieh, A. Serna, and F. Tadeo. 2017. Sensitivity analysis for photovoltaic water pumping systems: Energetic and economic studies. Energy Conversion and Management 135:402–15. doi:10.1016/j.enconman.2016.12.096.
  • Yang, H., L. Lin, and W. Zhou. 2007. A novel optimization sizing model for hybrid solar-wind. Solar Energy 81:76–84. doi:10.1016/j.solener.2006.06.010.
  • Yang, H. X., L. Lu, and J. Burnett. 2003. Weather data and probability analysis of hybrid photovoltaic–wind power generation systems in Hong Kong. Renewable Energy 28:1813–24. doi:10.1016/S0960-1481(03)00015-6.
  • Yang, H., Z. Wei, and L. Chengzhi. 2009. Optimal design and techno-economic analysis of a hybrid solar–wind power generation system. Applied Energy 86:163–69. doi:10.1016/j.apenergy.2008.03.008.
  • Yousefi, M., J. Hoon, D. Hooshyar, M. Yousefi, K. Salleh, M. Sahari, and R. Binti. 2017. A practical multi-objective design approach for optimum exhaust heat recovery from hybrid stand-alone PV-diesel power systems. Energy Conversion and Management 142:559–73. doi:10.1016/j.enconman.2017.03.031.
  • Yuan, X., and T. Sharma. 2022. Explaining expedited energy transition toward renewables by COVID-19 in India. Energy Policy 165 (March):112986. doi:10.1016/j.enpol.2022.112986.
  • Zadeh, L. A. 1999. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 100 (1):9–34. doi:10.1016/S0165-0114(99)80004-9.
  • Zahran, M. B. A. 2003. Photovoltaic hybrid systems reliability and availability. Journal of Power Electronics 3 (3):145–50.
  • Zhang, G., W. Baojia, A. Maleki, and W. Zhang. 2018. Simulated annealing-chaotic search algorithm based optimization of reverse osmosis hybrid desalination system driven by wind and solar Energies. Solar Energy 173 (April):964–75. doi:10.1016/j.solener.2018.07.094.
  • Zhang, Y., Q. S. Hua, L. Sun, and Q. Liu. 2020. Life cycle optimization of renewable energy systems configuration with hybrid battery/hydrogen storage: A comparative study. Journal of Energy Storage 30 (February):101470. doi:10.1016/j.est.2020.101470.
  • Zhang, H., and D. Liu. 2006. Fuzzy modeling and Fuzzy control. 1st ed., 416 . Boston, MA: Birkhäuser. doi:10.1007/978-0-8176-4539-7.
  • Zhang, X., H. Sun, H. Liu, J. Li, X. Zhang, and Y. Cao. 2019. Reliability evaluation of multi-energy microgrids: Energy storage evaluation of multi-energy microgrids: Energy cooling storage devices effects analysis devices effects analysis assessing the feasibility of, using the heat demand-outdoor temperature a. Energy Procedia 158:4453–58. doi:10.1016/j.egypro.2019.01.769.
  • Zhang, F., G. Wang, K. Meng, J. Zhao, Z. Xu, Z. Y. Dong, and J. Liang. 2017. Improved cycle control and sizing scheme for wind energy storage system based on multiobjective optimization. IEEE Transactions on Sustainable Energy 8 (3):966–77. doi:10.1109/TSTE.2016.2636878.
  • Zhang, P., L. Wenyuan, and S. Wang. 2012. Reliability-oriented distribution network reconfiguration considering uncertainties of data by interval analysis. International Journal of Electrical Power and Energy Systems 34 (1):138–44. doi:10.1016/j.ijepes.2011.08.026.
  • Zhang, H., D. Yue, W. Yue, L. Kang, and M. Yin. 2021. MOEA/D-based probabilistic PBI approach for risk-based optimal operation of hybrid energy system with intermittent power uncertainty. IEEE Transactions on Systems, Man, and Cybernetics: Systems 51 (4):2080–90. doi:10.1109/TSMC.2019.2931636.
  • Zhao, Y., F. Fan, J. Wang, and K. Xie. 2015. Uncertainty analysis for bulk power systems reliability evaluation using taylor series and nonparametric probability density estimation. International Journal of Electrical Power and Energy Systems 64:804–14. doi:10.1016/j.ijepes.2014.07.082.
  • Zhao, B., X. Zhang, L. Peng, K. Wang, M. Xue, and C. Wang. 2014. Optimal sizing, operating strategy and operational experience of a stand-alone microgrid on Dongfushan Island. Applied Energy 113:1656–66. doi:10.1016/j.apenergy.2013.09.015.
  • Zhou, W., C. Lou, Z. Li, L. Lu, and H. Yang. 2010. Current status of research on optimum sizing of stand-alone hybrid solar-wind power generation systems. Applied Energy 87 (2):380–89. doi:10.1016/j.apenergy.2009.08.012.
  • Zhu, J. 2015. Optimization of power system operation. 2nd Edition. John Wiley & Sons. doi:10.1002/9781118887004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.