126
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The effect of runner installation and design on the performance of gravitational vortex water turbine

, , , &
Pages 1434-1446 | Received 19 Feb 2023, Accepted 27 Aug 2023, Published online: 03 Sep 2023

References

  • Abutunis, A., and V. Gireesh Menta. 2022. Comprehensive parametric study of blockage effect on the performance of horizontal axis hydrokinetic turbines. Energies 15 (7):7. doi:10.3390/en15072585.
  • Adhikari, P., U. Budhathoki, S. Raj Timilsina, S. Manandhar, and T. Ratna Bajracharya. 2014. A study on developing pico propeller turbine for low head micro hydropower plants in Nepal. Journal of the Institute of Engineering 9 (1):36–53. doi:10.3126/jie.v9i1.10669.
  • Alexander, K. V., E. P. Giddens, and A. M. Fuller. 2009. Axial-flow turbines for low head microhydro systems. Renewable Energy 34 (1):35–47. doi:10.1016/j.renene.2008.03.017.
  • Aziz, M. Q. A., J. Idris, and M. Firdaus Abdullah. 2022. Simulation of the conical gravitational water vortex turbine (GWVT) design in pro- ducing optimum force for energy production. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 89 (2):77–91. doi:10.37934/arfmts.89.2.99113.
  • Badshah, M., J. VanZwieten, S. Badshah, and S. Jan. 2019. CFD study of blockage ratio and boundary proximity effects on the performance of a tidal turbine. IET Renewable Power Generation 13 (5):744–49. doi:10.1049/iet-rpg.2018.5134.
  • Betancour, J., F. Romero-Menco, L. Velasquez, A. Rubio-Clemente, and E. Chica. 2023. Design and optimization of a runner for a gravitational vortex turbine using the response surface methodology and experimental tests. Renewable Energy 210:306–20. doi:10.1016/j.renene.2023.04.045.
  • Byeon, S. S., and Y. Jea Kim. 2013. Influence of blade number on the flow character- istics in the vertical axis propeller hydro turbine. International Journal of Fluid Machinery and Systems 6 (3):144–51. doi:10.5293/IJFMS.2013.6.3.144.
  • Chattha, J. A., T. Ahmad Cheema, and N. Hanif Khan. 2017. Numerical investigation of basin geometries for vortex generation in a gravitational water vortex power plant. Proceedings of 2017 8th International Renewable Energy Congress. doi:10.1109/IREC.2017.7926028.
  • Consul, C. A., R. H. J. Willden, and S. C. Mcintosh. 2013. Blockage effects on the hydrodynamic performance of a marine crossflow turbine. Philosophical Transactions of the Royal Society A: Mathematical, Physical Engineering Sciences 371 (1985):20120299. doi:10.1098/rsta.2012.0299.
  • Cozzi, L., and T. Gould. 2021. ’world energy Outlook 2021’. Paris: International Energy Agency.
  • Daskiran, C., J. Riglin, and A. Oztekin. 2016. Numerical analysis of blockage ratio effect on a portable hydrokinetic turbine. Proceeding of ASME International Mechanical Engineering Congress and Exposition 7:1–8. doi:10.1115/IMECE2016-65828.
  • Dhakal, S., B. Ashesh, R. D. Timilsina, D. Fuyal, T. R. Bajracharya, P. P. Hari, N. Amatya, and A. M. Nakarmi. 2015. Comparison of cylindrical and conical basins with optimum position of runner: Gravitational water vortex power plant. Renewable and Sustainable Energy Reviews 48:662–69. doi:10.1016/j.rser.2015.04.030.
  • Dhakal, R., T. R. Bajracharya, S. Shakya, B. Kumal, S. J. Williamson, S. Guatam, D. P. Ghale, and K. Khanal. 2017. Computational and experimental investigation of runner for Grav- itational water vortex power plant. Proceeding of 6th International Conference on Renewable Energy Research and Applications 5:365–73. doi:10.1109/ICRERA.2017.8191087.
  • Gautam, A., A. Sapkota, S. Neupane, J. Dhakal, A. Babu Timilsina, and S. Shakya. 2017. Study on effect of adding booster runner in conical basin: Gravitational water vortex power plant: A Numerical and experimental Approach. Proceedings of the IOE Graduate Conference 4:107–13.
  • Heller, V. 2011. Scale effects in physical hydraulic engineering models. Journal of Hydraulic Research 49 (3):293–306. doi:10.1080/00221686.2011.578914.
  • Hoq, T., U. A. Nawshad, N. Islam, K. Syfullah, and R. Rahman. 2011. Micro hydro power: Promising solution for off-grid Renewable energy source. International Journal of Science and Engineering Research 2 (12):2–6. 10.1.1.301.332.
  • Hoseyni-Chime, A., and P. C. Malte. 2014. Hydrokinetic turbines at high blockage ratio. Seatle:University of Washington. Proceeding of 2nd Marine Energy Technology Symposium 2: 1–11.
  • Hyv¨arinen, A., and H. Hyv¨arinen. 2015. Investigation of blockage correction methods for full-scale wind tunnel testing of trucks. Stockholm: KTH, Royal Institute of Technology.
  • Jiang, Y., A. P. Raji, V. Raja, F. Wang, H. A. Z. AL-Bonsrulah, R. Murugesan, and S. Ranganathan. 2022. Multi–disciplinary optimizations of small-scale gravitational vortex hydropower (SGVHP) System through computational hydrodynamic and hydro–structural analyses. Sustainability 14 (2):727. doi:10.3390/su14020727.
  • Kayastha, M., P. Raut, N. Kumar Subedi, S. Tamang Ghising, and R. Dhakal. 2019. CFD evaluation of performance of gravitational water vortex turbine at different runner position. Lalitput: Kantipur Engineering College. Proceeding of KEC Conference 2: 1–9.
  • Khan, H. H. 2016. Blade optimization of gravitational water vortex turbine. Khyber Pakhtunkhwa: Ghulam Ishaq Khan Institute of Engineering Science and Technology.
  • Kolekar, N., and A. Banerjee. 2015. Performance characterization and placement of a marine hydrokinetic turbine in a tidal channel under boundary proximity and blockage effects. Applied Energy 148:121–33. doi:10.1016/j.apenergy.2015.03.052.
  • Kueh, T. C., S. L. Beh, Y. S. Ooi, and D. G. Rilling. 2017. Experimental study to the influences of rotational speed and blade shape on water vortex turbine performance. Journal of Physics: Conference Series 822 (1):012066. doi:10.1088/1742-6596/822/1/012066.
  • Kurniawan, R., D. A. Himawanto, and P. J. Widodo. 2019. The performance of numbers of blade towards picohydro propeller turbine. Proceeding of IOP Conference Series: Materials Science and Engineering 508 (1):4–9. doi:10.1088/1757-899X/508/1/012057.
  • Mahmashani, A. W., R. Hantoro, E. Septyaningrum, O. Agassy Firman- Syah, and F. Zidna. 2018. Impact of Sizing in VAHT-SBC to the channel blockage. Proceeding of 2018 International Seminar on Intelligent Technology and Its Applications. doi:10.1109/ISITIA.2018.8711188.
  • Mulligan, S. 2015. Experimental and Numerical analysis of three-dimensional free- surface Turbulent vortex flows with strong circulation. Technical Report. Sligo: Institute of Technology Sligo.
  • Mulligan, S., C. John, and S. Richard. 2016. Experimental and Numerical modelling of free-surface Turbulent flows in full air-core water vortices. In Advances in Hydroinformatics, ed. P. Gourbesville, 549–69. Singapore: Springer. doi:10.1007/978-981-287-615-7_37.
  • Nishi, Y., R. Suzuo, D. Sukemori, and T. Inagaki. 2020. Loss analysis of gravitation vortex type water turbine and influence of flow rate on the turbine’s perfor- mance. Renewable Energy 155:1103–17. doi:10.1016/j.renene.2020.03.186.
  • Power, C., A. McNabola, and P. Coughlan. 2015. A parametric experimental investigation of the operating conditions of gravitational vortex hydropower (GVHP). Journal of Clean Energy Technologies 4 (2):112–19. doi:10.7763/JOCET.2016.V4.263.
  • Saleem, A. S., T. Ahmad Cheema, R. Ullah, S. Mushtaq Ahmad, J. Ahmad Chattha, B. Akbar, and C. Woo Park. 2020. Parametric study of single-stage gravitational water vortex turbine with cylindrical basin. Energy 200:117464. doi:10.1016/j.energy.2020.117464.
  • Sanchez, A. R., A. Guevara Munoz, J. Sierra Del Rio, and J. Posada Montoya. 2021. Numerical comparison of two runners for gravitational vortex turbine. Engineering Transactions 69 (1):3–17. doi:10.24423/EngTrans.1165.20210126.
  • Singh, P., and F. Nestmann. 2009. Experimental optimization of a free vortex propeller runner for micro hydro application. Experimental Thermal & Fluid Science 33 (6):991–1002. doi:10.1016/j.expthermflusci.2009.04.007.
  • Slachmuyders, G. 2017. A gravitational vortex water turbineassembly. World Intellectual Property Organization WO2017/097943 A1. Filed December 8, 2016 and issued June 15, 2017.
  • Timilsina, A. B., S. Mulligan, and T. Ratna Bajracharya. 2018. Water vortex hy- dropower technology: A state-of-the-art review of developmental trends. Clean Technologies and Environmental Policy 20 (8):1737–60. doi:10.1007/s10098-018-1589-0.
  • Turbulent Team. 2020. “A global solution, with ongoing innovation.” Accessed November 12, 2020. https://www.turbulent.be/projects.
  • Ullah, R., T. Ahmad Cheema, A. Samad Saleem, S. Mushtaq Ahmad, J. Ahmad Chattha, and C. Woo Park. 2019. Performance analysis of multi- stage gravitational water vortex turbine. Energy Conversion and Management 198 (May):111788. doi:10.1016/j.enconman.2019.111788.
  • Velasquez, L., A. Posada, and E. Chica. 2023. Surrogate modeling method for multi-objective optimization of the inlet channel and the basin of a gravitational water vortex hydraulic turbine. Applied Energy 330:120357. doi:10.1016/j.apenergy.2022.120357.
  • Wanchat, S., and R. Suntivarakorn. 2012. Preliminary design of a vortex pool for electrical generation. Advanced Science Letters 13 (1):173–77. doi:10.1166/asl.2012.3855.
  • Wardhana, E. M., A. Santoso, and A. Rahmat Ramdani. 2019. Analysis of Got- tingen 428 Airfoil turbine propeller design with computational fluid dynamics method on gravitational water vortex power plant. Proceeding of International Journal of Marine Engineering Innovation and Research 3 (3). doi:10.12962/j25481479.v3i3.4864.
  • Wichian, P., and R. Suntivarakorn. 2016. The effects of turbine baffle plates on the efficiency of water free vortex turbines. Energy Procedia 100:198–202. doi:10.1016/j.egypro.2016.10.165.
  • Williamson, S. J., B. H. Stark, and J. D. Booker. 2014. Low head pico hydro turbine selection using a multi-criteria analysis. Renewable Energy 61:43–50. doi:10.1016/j.renene.2012.06.020.
  • Wu, H., J. J. Feng, G. K. Wu, and X. Q. Luo. 2012. Numerical investigation of hub clearance flow in a Kaplan turbine. IOP Conference Series: Earth and Environmental Science 15 (7):072026. doi:10.1088/1755-1315/15/7/072026.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.