160
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Machine learning for sustainable reutilization of waste materials as energy sources – a comprehensive review

&
Pages 1641-1666 | Received 23 Jan 2023, Accepted 31 Aug 2023, Published online: 10 Sep 2023

References

  • Abbas, D., D. Current, M. Phillips, R. Rossman, H. Hoganson, and K. N. Brooks. 2011. Guidelines for collecting forest biomass for energy: A synthesis of environmental considerations. Biomass and Bioenergy 35 (11):4538–46. doi:10.1016/j.biombioe.2011.06.029.
  • Abioye, E. A., O. Hensel, T. J. Esau, O. Elijah, M. S. Z. Abidin, A. S. Ayobami, O. Yerima, and A. Nasirahmadi. 2022. Precision irrigation management using machine learning and digital farming solutions. AgriEngineering 4 (1):70–103. doi:10.3390/agriengineering4010006.
  • Adawiyah, A. R., and I. N. Nik. 2013. A hybrid P-Graph and WEKA approach in decision-making: Waste conversion technologies selection., a hybrid P-Graph and WEKA approach in decision-making: Waste conversion technologies selection. Journal of Applied Science and Engineering 26 (2): 261–267.
  • Ahmad, F., M. S. Younis, R. U. Zahid, and L. A. Shahid. 2020. Machine learning based grain moisture estimation for real-time monitoring of high-temperature paddy drying silo. 2020 IEEE 23rd International Multitopic Conference (INMIC), 1–6, doi:10.1109/INMIC50486.2020.9318071.
  • Ajjolli Nagaraja, A., P. Charton, X. F. Cadet, N. Fontaine, M. Delsaut, B. Wiltschi, A. Voit, B. Offmann, C. Damour, B. Grondin-Perez, et al. 2020. A machine learning approach for efficient selection of enzyme concentrations and its application for flux optimization. Catalysts 10 (3):291. doi:10.3390/catal10030291.
  • Alley, E. C., G. Khimulya, S. Biswas, M. AlQuraishi, and G. M. Church. 2019. Unified rational protein engineering with sequence-based deep representation learning. Nature Methods 16 (12):1315–22. doi:https://doi.org/10.1038/s41592-019-0598-1.
  • Alonso, J., A. Villa, and A. Bahamonde. 2015. Improved estimation of bovine weight trajectories using support vector machine classification. Computers and Electronics in Agriculture 110:36–41. doi:10.1016/j.compag.2014.10.001.
  • Aluko, O. O., C. Li, Q. Wang, and H. Liu. 2021. Sucrose utilization forImproved crop yields: A review article. International Journal of Molecular Sciences 22:4704. doi:10.3390/ijms22094704.
  • Amani, M. A., and F. Marinello. February, 2022. A deep learning-based model to reduce costs and increase productivity in the case of small datasets: A case study in cotton cultivation. Agriculture, MDPI 12(2):1–13. doi:10.3390/agriculture12020267.
  • Anjum, M., and M. S. Umar. 2018. Garbage localization based on weakly supervised learning in deep convolutional neural network. Proceedings - IEEE 2018 International Conference on Advances in Computing, Communication Control and Networking, ICACCCN 2018, Oct. 1108–13. doi:10.1109/ICACCCN.2018.8748568.
  • Araujo, M., T. Rivas, E. Giraldez, and J. Taboada. 2011. Use of machine learning techniques to analyse the risk associated with mine sludge deposits. Mathematical and Computer Modelling. 54 (7–8):1823–28. ISSN 0895-7177. doi:10.1016/j.mcm.2010.11.066.
  • Asantewaa Owusu, P., S. Asumadu-Sarkodie, and S. Dubey. 2016. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering 3 (1):1. doi:10.1080/23311916.2016.1167990.
  • Averesch, N. J. H., V. S. Martínez, L. K. Nielsen, and J. O. Krömer. 2018. Toward synthetic biology strategies for adipic acid production: An in silico tool for combined thermodynamics and stoichiometric analysis of metabolic networks. ACS Synthetic Biology 7 (2):490–509. doi:10.1021/acssynbio.7b00304.
  • Azadnia, R., S. Fouladi, and A. Jahanbakhshi. 2023. Intelligent detection and waste control of hawthorn fruit based on ripening level using machine vision system and deep learning techniques. Results in Engineering 17:100891. ISSN 2590-1230. doi:10.1016/j.rineng.2023.100891.
  • Badreldin, N., B. Prieto, and R. Fisher. 2021. Mapping grasslands in mixed grassland ecoregion of Saskatchewan using big remote sensing data and machine learning. Remote Sensing 13 (24):4972. doi:https://doi.org/10.3390/rs13244972.
  • Bai, J., S. Lian, Z. Liu, K. Wang, and D. Liu. 2019. Deep learning based robot for automatically picking up garbage on the grass. IEEE Transactions on Consumer Electronics 64 (3):382–89. doi:10.1109/TCE.2018.2859629.
  • Barad, M., and D. Braha. 1996. Control limits for multi-stage manufacturing processes with binomial yield (single and multiple production runs). The Journal of the Operational Research Society 47 (1):98–112. doi:https://doi.org/10.1057/jors.1996.9.
  • Basher, S. A., D. Raboy, S. Kaitibie, and I. Hossain. 2013. Understanding challenges to food security in dry Arab micro-states: Evidence from Qatari micro-data. Rochester, NY: Social Science Research Network.
  • Bhandari, S. October 2020. Automative Waste Sorting in Industrial Environment via Machine Learning Approaches. Master’s Thesis, Information Technology and Communication Sciences TAU.
  • Bijos, J. C. B. F., V. M. Zanta, J. Morató, L. M. Queiroz, and K. P. S. R. Oliveira-Esquerre. 2022. Improving circularity in municipal solid waste management through machine learning in Latin America and the Caribbean. Sustainable Chemistry and Pharmacy 28:100740. ISSN 2352-5541. doi:10.1016/j.scp.2022.100740.
  • Birgen, C., E. Magnanelli, P. Carlsson, Ø. Skreiberg, J. Mosby, and M. Becidan. 2021. Machine learning based modelling for lower heating value prediction of municipal solid waste. Fuel 283:118906. ISSN 0016-2361. doi:10.1016/j.fuel.2020.118906.
  • Bobulski, K. M. J. Waste classification system using image processing and convolutional neural networks. International Work-Conference on Artificial Neural Networks, Springer, Cham. 350–61. Jun 12, 2019. doi:10.1007/978-3-030-20518-8_30.
  • Boniecki, P., J. Dach, K. Pilarski, and H. Piekarska-Boniecka. 2012. Artificial neural networks for modeling ammonia emissions released from sewage sludge composting. Atmospheric Environment 57:49–54. ISSN 1352-2310. doi:10.1016/j.atmosenv.2012.04.036.
  • Boudru, M. 1989. Forêt et sylviculture. Le traitement Des forêts [forest and silviculture. The treatment of forests]. Tome 2, 344. Gembloux: Presses Agronomiques de Gembloux. in french.
  • Buxbaum, N., J. H. Lieth, and M. Earles. Apr 13, 2022. Non-destructive plant biomass monitoring with high spatio-temporal resolution via proximal RGB-D imagery and end-to-end deep learning. Frontiers in Plant Science 13:758818. PMID: 35498682 PMCID: PMC9043900. doi:10.3389/fpls.2022.758818.
  • Carbonell, J. G., R. S. Michalski, and T. M. Mitchell. 1983. Machine learning: A historical and methodological analysis. AI Magazine 4 (3):69–79. doi:10.1609/aimag.v4i3.406.
  • Chen, X., R. Avtar, D. Agus Umarhadi, A. Stephanus Louw, S. Shrivastava, A. P. Yunus, K. Mohamed Khedher, T. Takemi, and H. Shibata. 2022. Post-typhoon forest damage estimation using multiple vegetation indices and machine learning models. Weather and Climate Extremes 38:100494. ISSN 2212-0947. doi:10.1016/j.wace.2022.100494.
  • Chen, X., Y. Huang, C. Nie, S. Zhang, G. Wang, S. Chen, and Z. Chen. 2022. A long-term reconstructed TROPOMI solar-induced fluorescence dataset using machine learning algorithms. Scientific Data 9 (1):427. doi:https://doi.org/10.1038/s41597-022-01520-1.
  • Chhokar, R. S., R. Kumar Sharma, M. Kumar Gathala, and A. Kumar Pundir. 2014. Effects of crop establishment techniques on weeds and rice yield. Crop Protection 64:7–12. ISSN 0261-2194. doi:10.1016/j.cropro.2014.05.016.
  • Chiang, C., C. Barnes, P. P. Angelov, and R. M. Jiang. 2020. Deep learning based Automated forest health diagnosis from aerial images. Institute of Electrical and Electronics Engineers Access 8:144064–76. doi:10.1109/ACCESS.2020.3012417.
  • Ching, P. M. L., A. P. Mayol, J. L. G. S. Juan, R. H. Y. So, C. L. Sy, E. Mandia, A. T. Ubando, and A. B. Culaba. 2022. Early prediction of spirulina platensis biomass yield for biofuel production using machine learning. Clean Technologies and Environmental Policy 24 (7):2283–93. doi:10.1007/s10098-022-02321-1.
  • Concu, R., M. Cordeiro, D. S. Natália, C. R. Munteanu, and H. González-Díaz. 2019. PTML model of enzyme subclasses for mining the proteome of biofuel producing microorganisms. Journal of Proteome Research 18 (7):2735–46. doi:10.1021/acs.jproteome.8b00949.
  • Coopersmith, E. J., B. S. Minsker, C. E. Wenzel, and B. J. Gilmore. 2014. Machine learning assessments of soil drying for agricultural planning. Computers and Electronics in Agriculture 104:93–104. doi:10.1016/j.compag.2014.04.004.
  • Coşgun, A., M. E. Günay, and R. Yıldırım. 2021. Exploring the critical factors of algal biomass and lipid production for renewable fuel production by machine learning. Renewable Energy 163:1299–317. ISSN 0960-1481. doi:10.1016/j.renene.2020.09.034.
  • Cubillos, M. 2020. Multi-site household waste generation forecasting using a deep learning approach. Waste Management 115:8–14. doi:10.1016/j.wasman.2020.06.046.
  • Czarnecki, S., M. Hadzima-Nyarko, A. Chajec, and Ł. Sadowski. 2022. Design of a machine learning model for the precise manufacturing of green cementitious composites modified with waste granite powder. Scientific Reports 12 (1):13242. doi:https://doi.org/10.1038/s41598-022-17670-6.
  • Dalaka, A., B. Kompare, and M. Robnik-Šikonja. 2000. Sgardelis stefanos modelling the effects of environmental conditions on apparent photosynthesis of stipa bromoides by machine learning tools. Ecological Modelling 129 (2–3):245–57. doi:10.1016/S0304-3800(00)00237-4.
  • Dantas, D., M. D. Terra, L. P. Schorr, and N. Calegário. 2021. Machine learning for carbon stock prediction in a tropical forest in Southeastern Brazil. Valdivia: Bosque.
  • Defresne, M., S. Barbe, and T. Schiex. Oct 29, 2021. Protein design with deep learning. International Journal of Molecular Sciences 22 (21):11741. PMID: 34769173; PMCID: PMC8584038. doi:10.3390/ijms222111741.
  • De la Fuente, R., J. Cancino, and E. Acuña. 2021. Comparison of machine learning methods for dry biomass estimation based on green logging residues chips. International Journal of Forest Engineering 32 (2):174–84. doi:10.1080/14942119.2021.1892415.
  • De Wit, M., M. Junginger, and A. Faaij. 2013. Learning in dedicated wood production systems: Past trends, future outlook and implications for bioenergy. Renewable & Sustainable Energy Reviews 19:417–32. doi:10.1016/j.rser.2012.10.038.
  • Diaz-Gonzalez, F. A., J. Vuelvas, C. A. Correa, V. E. Vallejo, and D. Patino. 2022. Machine learning and remote sensing techniques applied to estimate soil indicators – review, ecological indicators. Ecological Indicators 135:108517. ISSN 1470-160X. doi:10.1016/j.ecolind.2021.108517.
  • Doshi, Z., S. Nadkarni, R. Agrawal, and N. Shah. 2018. AgroConsultant: Intelligent crop recommendation system using machine learning algorithms. Proceedings of the 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), Pune, India, 1–6. IEEE: Piscataway, NJ, USA, August 16–18, 2018.
  • Du, Y., Q. Meng, S. Wang, and H. Kuang. 2019. Two-phase optimal solutions for ship speed and trim optimization over a voyage using voyage report data. Transportation Research Part B: Methodological 122:88–114. doi:10.1016/j.trb.2019.02.004.
  • Dutta, R., C. Li, D. Smith, A. Das, and J. Aryal. 2015. Big data architecture for environmental analytics. International Symposium on Environmental Software Systems, Springer: Berlin/Heidelberg, Germany, 578–88.
  • Duysak, H., and E. Yigit. 2020. Machine learning based quantity measurement method for grain silos. Measurement 152:107279. ISSN 0263-2241. doi:10.1016/j.measurement.2019.107279.
  • Fang, F., B. Ni, W. Li, G. Sheng, and H. Yu. 2011. A simulation-based integrated approach to optimize the biological nutrient removal process in a full-scale wastewater treatment plant. Chemical Engineering Journal 174 (2–3):635–43. doi:https://doi.org/10.1016/j.cej.2011.09.079.
  • FAO. 2016. Poplars and other fast-growing trees-renewable resources for future green economies. Synthesis of country progress reports. Activities related to poplar and willow cultivation and utilization – 2012 through 2016. FAO- Forest Policy and Resource Division, Forestry Department International Poplar Commission 25th Session, Berlin, Rome, Sept 13–16, 2016
  • Farahani, R. Z., N. Asgari, H. Hojabri, and A. A. Jaafari. 2009. Optimizing wheat storage and transportation system using a mixed integer programming model and genetic algorithm: A case study. 2009 IEEE International Conference on Industrial Engineering and Engineering Management, 2109–13. doi:10.1109/IEEM.2009.5373152.
  • Fechner, R., S. Legler, and T. Engelmann. 2012. Germany - a source of raw materials. 2012 Electronics Goes Green 2012+ 12:1–6.
  • Feehan, R., M. W. Franklin, and J. S. G. Slusky. 2021. Machine learning differentiates enzymatic and non-enzymatic metals in proteins. Nature Communications 12 (1):3712. doi:10.1038/s41467-021-24070-3.
  • Feng, B., L. Zhuo, M. M. Mekonnen, L. T. Marston, X. Yang, Z. Xu, Y. Liu, W. Wang, Z. Li, M. Li, et al. 2022. Inputs for staple crop production in China drive burden shifting of water and carbon footprints transgressing part of provincial planetary boundaries. Water Research 221:118803. ISSN 0043-1354. doi:10.1016/j.watres.2022.118803.
  • Field, C. B., M. J. Behrenfeld, J. T. Randerson, and P. Falkowski. 1998. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 281 (5374):237–40. doi:10.1126/science.281.5374.237.
  • Flores, P., V. Hernández, J. Fenoll, and P. Hellín. 2019. Pre-harvest application of ozonated water on broccoli crops: Effect on head quality. Journal of Food Composition & Analysis 83:103260. ISSN 0889-1575. doi:10.1016/j.jfca.2019.103260.
  • Fu, P., K. Meacham-Hensold, K. Guan, and C. J. Bernacchi. 2019. Hyperspectral leaf reflectance as proxy for photosynthetic capacities: An ensemble approach based on multiple machine learning algorithms. Frontiers in Plant Science 10:730. doi:10.3389/fpls.2019.00730.
  • Furuya, D. E. G., J. A. F. Aguiar, N. V. Estrabis, M. M. F. Pinheiro, M. T. G. Furuya, D. R. Pereira, W. N. Gonçalves, V. Liesenberg, J. Li, J. Marcato Junior, et al. 2020. A machine learning approach for mapping forest vegetation in riparian zones in an Atlantic Biome environment using Sentinel-2 imagery. Remote Sensing 12 (24):4086. doi:10.3390/rs12244086.
  • Galvão, V. C., and C. Fankhauser. 2015. Sensing the light environment in plants: Photoreceptors and early signaling steps. Current Opinion in Neurobiology 34:46–53. PMID 25638281. S2CID 12390801. doi:10.1016/j.conb.2015.01.013.
  • Gamble, C., D. Bryant, D. Carrieri, E. Bixby, J. Dang, J. Marshall, D. Doughty, L. Colwell, M. Berndl, J. Roberts, et al. 2021. Machine learning optimization of photosynthetic microbe cultivation and recombinant protein production. bioRxiv. doi:10.1101/2021.08.06.453272.
  • Gao, Y., D. Chang, C. H. Chen, and T. Fang. 2018. Deep learning with long short-term memory recurrent neural network for daily container volumes of storage yard predictions in port. 2018 International Conference on Cyberworlds, Singapore, IEEE, 427–30.
  • Garre, A., M. C. Ruiz, and E. Hontoria. 2020. Application of machine learning to support production planning of a food industry in the context of waste generation under uncertainty. Operations Research Perspectives 7:100147. ISSN 2214-7160. doi:10.1016/j.orp.2020.100147.
  • Gautam, S., U. Mishra, C. D. Scown, and Y. Zhang. 2020. Sorghum biomass production in the continental United States and its potential impacts on soil organic carbon and nitrous oxide emissions. Global Change Biology Bioenergy 12 (10):878–90. doi:10.1111/gcbb.12736.
  • Goettsch, D., K. K. Castillo-Villar, and M. Aranguren. 2020. Machine-learning methods to select potential depot locations for the supply chain of biomass co-firing. Energies 13 (24):6554. doi:10.3390/en13246554.
  • Goldstein, H. Jan 2002. Waste not, pollute not [animal waste recycling for power production. IEEE Spectrum 39 (1):72–77. doi:10.1109/6.975026.
  • Grinblat, G. L., L. C. Uzal, M. G. Larese, and P. M. Granitto. 2016. Deep learning for plant identification using vein morphological patterns. Computers and Electronics in Agriculture 127:418–24. doi:10.1016/j.compag.2016.07.003.
  • Gudavalli, C., E. Bose, B. S. Donohoe, and D. A. Sievers. 2020. Real-time biomass feedstock particle quality detection using image analysis and machine vision. Biomass Conversion and Biorefinery 12 (12):5739–50. doi:https://doi.org/10.1007/s13399-020-00904-w.
  • Gustavsson, J., C. Cederberg, U. Sonesson, R. Van Otterdijk, and A. Meybeck. 2011. Global food losses and food waste. Rome: FAO.
  • Hall, D. O. 1979. Solar energy use through biology—past, present and future. Solar Energy 22 (4):307–28. doi:10.1016/0038-092X(79)90184-1.
  • Han, X., W. Ning, X. Ma, X. Wang, and K. Zhou. 2020. Improving protein solubility and activity by introducing small peptide tags designed with machine learning models. Metabolic Engineering Communications 11:e00138. ISSN 2214 0301. doi:10.1016/j.mec.2020.e00138.
  • Han, Z., J. Sun, A. Lv, Y. Sung, H. Shi, X. Hu, and K. Xing. 2017. Isolation, identification and characterization of shewanella algae from reared tongue sole, cynoglossus semilaevis günther. Aquaculture 468:356–62. doi:10.1016/j.aquaculture.2016.10.038.
  • Hart, E., K. Sim, K. Kamimura, C. Meredieu, D. Guyon, and B. Gardiner. 2019. Use of machine learning techniques to model wind damage to forests. Agricultural and Forest Meteorology 265:16–29. ISSN 0168-1923. doi:10.1016/j.agrformet.2018.10.022.
  • Häse, F., L. M. Roch, P. Friederich, and A. Aspuru-Guzik. 2020. Designing and understanding light-collecting devices with machine learning. Nature Communications 11 (1):4587. doi:10.1038/s41467-020-17995-8.
  • He, T., J. Jo Marco, and R. Soares. 2019. Machine learning models with quantitative wood anatomy data can discriminate between swietenia macrophylla and swietenia mahagoni. Jornal of Forest 11 (1):36. doi:10.3390/f11010036.
  • Hoekman, D. H. 1997. Radar monitoring system for sustainable forest management in Indonesia, IGARSS’97. 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing - A Scientific Vision for Sustainable Development 4:1731–33. doi:10.1109/IGARSS.1997.609048.
  • Hosseini, S. E. 2022. Transition away from fossil fuels toward renewables: Lessons from Russia-Ukraine Crisis. Future Energy 1 (1):2–5. https://fupubco.com/fuen/article/view/8.
  • Huang, Z. Q., Y. C. Chen, and C. Y. Wen. 2020. Real-time weather monitoring and prediction using city buses and machine learning. Sensors (Switzerland) 20 (18):1–21. doi:10.3390/s20185173.
  • Huang, P., S. K. S. Chu, H. N. Frizzo, M. P. Connolly, R. W. Caster, and J. B. Siegel. 2020. Evaluating protein engineering thermostability prediction tools using an independently generated dataset. ACS Omega 5 (12):6487–93. doi:10.1021/acsomega.9b04105.
  • Huang, G. L., J. He, Z. Xu, and G. Huang. 2020. A combination model based on transfer learning for waste classification. Concurrency & Computation: Practice & Experience 32 (19):1–12. doi:10.1002/cpe.5751.
  • Hughes, F., K. Richards, J. Girel, T. Moss, E. Muller, C. Nilsson, and S. Rood. 2003. The flooded forest: Guidance for policy makers and river managers in Europe on the restoration of floodplain forests. FLOBAR2. Cambridge, UK: Department of Geography, University of Cambridge.
  • Huntington, H., X. Cui, U. Mishra, and D. Scown. February 05, 2020. Machine learning to predict biomass sorghum yields under future climate scenarios. Wiley Online Library. doi:10.1002/bbb.2087.
  • Hussain, A., U. Draz, T. Ali, S. Tariq, M. Irfan, A. Glowacz, J. A. Antonino Daviu, S. Yasin, and S. Rahman. 2020. Waste management and prediction of air pollutants using IoT and machine learning approach. Energies 13 (15):3930–51. doi:10.3390/en13153930.
  • Irani, Z., and A. M. Sharif. 2016. Sustainable food security futures: Perspectives on food waste and information across the food supply chain. Journal of Enterprise Information Management 29 (2):171–78. doi:https://doi.org/10.1108/JEIM-12-2015-0117.
  • Jafarbiglu, H., and A. Pourreza. 2022. A comprehensive review of remote sensing platforms, sensors, and applications in nut crops. Computers and Electronics in Agriculture 197:106844. ISSN 0168-1699. doi:https://doi.org/10.1016/j.compag.2022.106844.
  • Jagannathan, B. V., M. Dakoske, and P. P. Vijayakumar. 2022. Bacteriophage-mediated control of pre- and post-collect produce quality and safety. LWT 169:113912. ISSN 0023-6438. doi:10.1016/j.lwt.2022.113912.
  • Johann, A. L., A. G. de Araújo, H. C. Delalibera, and A. R. Hirakawa. 2016. Soil moisture modeling based on stochastic behavior of forces on a no-till chisel opener. Computers and Electronics in Agriculture 121:420–28. doi:10.1016/j.compag.2015.12.020.
  • Kabugo, J. C., S.-L. Jämsä-Jounela, R. Schiemann, and C. Binder. 2020. Industry 4.0 based process data analytics platform: A waste-to-energy plant case study. International Journal of Electrical Power & Energy Systems 115:15508. ISSN 0142-0615. doi:10.1016/j.ijepes.2019.105508.
  • Kaneko, T., K. Nomura, D. Yasutake, T. Iwao, T. Okayasu, Y. Ozaki, M. Mori, T. Hirota, and M. Kitano. 2022. A canopy photosynthesis model based on a highly generalizable Artificial neural Network incorporated with a mechanistic understanding of single-leaf photosynthesis. Agricultural and Forest Meteorology v 323:109036. doi:10.1016/j.agrformet.2022.109036.
  • Kang, Z., J. Yang, G. Li, and Z. Zhang. 2020. An automatic garbage classification system based on deep learning. Institute of Electrical and Electronics Engineers Access 8:140019–29. doi:10.1109/ACCESS.2020.3010496.
  • Kaplan, A., R. Schwarz, J. Lieman-Hurwitz, M. Ronen-Tarazi, and L. Reinhold. 1994. The molecular biology of the cyanobacteria. ed. Bryant, D, 469–85. Dordrecht, The Netherlands: Kluwer Academic Pub. doi:10.1007/978-94-011-0227-8_15.
  • Karimi, Y., S. O. Prasher, R. M. Patel, and S. H. Kim. 2006. Application of support vector machine technology for weed and nitrogen stress detection in corn. Computers and Electronics in Agriculture 51 (1–2):99–109. doi:10.1016/j.compag.2005.12.001.
  • Khan, R., S. Kumar, A. K. Srivastava, N. Dhingra, M. Gupta, N. Bhati, and P. Kumari. Aug 26, 2021. Machine learning and IoT-Based waste management model. Computational Intelligence and Neuroscience 2021:1–11. PMID: 34484322;PMCID:PMC8416408. doi:10.1155/2021/5942574.
  • Khruschev, S. S., T. Y. Plyusnina, T. K. Antal, S. I. Pogosyan, G. Y. Riznichenko, and A. B. Rubin. 2022. Machine learning methods for assessing photosynthetic activity: Environmental monitoring applications. Biophysical Reviews 14 (4):821–42. doi:https://doi.org/10.1007/s12551-022-00982-2.
  • Kibleur, P., J. Aelterman, M. N. Boone, J. Van den Bulcke, and J. Van Acker. 2022. Deep learning segmentation of wood fiber bundles in fiberboards. Composites Science and Technology 221:109287. ISSN 0266-3538. doi:10.1016/j.compscitech.2022.109287.
  • Kim, J. S. 2017. Vessel target prediction method and dead reckoning position based on SVR seaway model. International Journal of Fuzzy Logic & Intelligent Systems 17 (4):279–88. doi:10.5391/IJFIS.2017.17.4.279.
  • Kindermann, G. E., I. McCallum, S. Fritz, and M. Obersteiner. 2008. A global forest growing stock, biomass and carbon map based on FAO statistics. Silva Fennica 42 (3):387–96. doi:10.14214/sf.244.
  • Kircher, S., and P. Schopfer. 2012. Photosynthetic sucrose acts as cotyledon-derived long-distance signal to control root growth during early seedling development in arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 109 (28):11217–21. doi:10.1073/pnas.1203746109.
  • Köhl, M., R. Lasco, M. Cifuentes, Ö. Jonsson, K. T. Korhonen, P. Mundhenk, J. de Jesus Navar, and G. Stinson. 2015. Changes in forest production, biomass and carbon: Results from the 2015UNFAO global forest resource assessment. Forest Ecology and Management 352:21–34. doi:10.1016/j.foreco.2015.05.036.
  • Kowalczyk-Juśko, A., P. Pochwatka, M. Zaborowicz, W. Czekała, J. Mazurkiewicz, A. Mazur, D. Janczak, A. Marczuk, and J. Dach. 2020. Energy value estimation of silages for substrate in biogas plants using an artificial neural network. Energy 202:117729. ISSN 0360-5442. doi:10.1016/j.energy.2020.117729.
  • Kramer, D., J. Chen, E. Ostendorf, X. Lei, J. Cruz, and J. Brodersen. 2022. Methods for estimating photosynthetic characteristics in plant canopies and systems and apparatus related thereto. Board of trustees of Michigan State University.
  • Kroll, A., M. K. M. Engqvist, D. Heckmann, M. J. Lercher, and J. W. Locasale. 2021. Deep learning allows genome-scale prediction of Michaelis constants from structural features. PLoS Biology 19 (10):e3001402. doi:10.1371/journal.pbio.3001402.
  • Kujawa, S., J. Mazurkiewicz, and W. Czekała. 2020. Using convolutional neural networks to classify the maturity of compost based on sewage sludge and rapeseed straw. Journal of Cleaner Production 258:120814. ISSN 0959-6526. doi:10.1016/j.jclepro.2020.120814.
  • Kumar, A., O. Rajendra, and S. Chakraborty, 2019 Intelligent crop recommendation system using ML http://203.201.63.46:8080/jspui/bitstream/123456789/6116/1/PR3111.pdf
  • Kumar, V., A. Sharma, R. Kumar, R. Bhardwaj, A. Kumar Thukral, and J. Rodrigo-Comino. 2018. Assessment of heavy-metal pollution in three different Indian water bodies by combination of multivariate analysis and water pollution indices. Human and Ecological Risk Assessment: An International Journal 26 (1):1–16. doi:10.1080/10807039.2018.1497946.
  • Kundu, N., G. Rani, and V. Singh Dhaka. 2022. Seeds classification and quality testing using deep learning and YOLO v5. Proceedings of the International Conference on Data Science, Machine Learning and Artificial Intelligence (DSMLAI ‘21’), Association for Computing Machinery, New York, NY, USA, 153–60. doi:10.1145/3484824.3484913.
  • Lee, H. Y., H. N. Y. J. Choi, Y. J. Jung, H. S. Uhm, and B. K. Kang. 2003. Sewage sludge treatment by arc discharge. Digest of Technical Papers. PPC-2003. 14th IEEE International Pulsed Power Conference (IEEE Cat. No.03CH37472) 2:1247–49. doi:10.1109/PPC.2003.1278039.
  • Lee, J., J. Im, K. Kim, and L. J. Quackenbush. 2018. Machine learning approaches for estimating forest stand height using plot-based observations and airborne LiDAR data. Forests 9 (5):268. doi:10.3390/f9050268.
  • Lee, K. J., S. T. Yun, S. Yu, K. H. Kim, J. H. Lee, and S. H. Lee. 2019. The combined use of self-organizing map technique and fuzzy c-means clustering to evaluate urban groundwater quality in Seoul metropolitan city, South Korea. Journal of Hydrology 569:685–97. doi:10.1016/j.jhydrol.2018.12.031.
  • Li, D. 2022. Application of artificial intelligence and machine learning based on big data analysis in sustainable agriculture. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science 71 (9):956–69. doi:10.1080/09064710.2021.1965650/.
  • Liang, S., and Y. Gu. 2021. A deep convolutional neural network to simultaneously localize and recognize waste types in images. Waste Management 126:247–57. 03.017. doi:10.1016/j.wasman.2021.
  • Liu, B., H. Sträuber, J. Saraiva, H. Harms, S. G. Silva, J. C. Kasmanas, S. Kleinsteuber, and U. Nunes da Rocha. 2022. Machine learning-assisted identification of bioindicators predicts medium-chain carboxylate production performance of an anaerobic mixed culture. Microbiome 10 (1):48. doi:https://doi.org/10.1186/s40168-021-01219-2.
  • Liu, P., J. Wang, A. Sangaiah, Y. Xie, and X. Yin. 2019. Analysis and prediction of water quality using LSTM deep neural networks in IoT environment. Sustainability 11 (7):072058. doi:https://doi.org/10.3390/su11072058.
  • Loaiza, M. F., R. P. Solano, R. Simancas, and V. H. Ojito. 2017. Modeling demand for air cargo in the Colombian context. International Conference on Advanced Materials Science and Civil Engineering, Thailand, 70, 132–37.
  • Long, B., B. Fischer, Y. Zeng, Z. Amerigian, Q. Li, H. Bryant, M. Li, S. Y. Dai, and J. S. Yuan. 2022. Machine learning-informed and synthetic biology enabled semi-continuous algal cultivation to unleash renewable fuel productivity. Nature Communications 13 (1):541. doi:10.1038/s41467-021-27665-y.
  • Lutz, É., and P. Carteri Coradi. 2022. Applications of new technologies for monitoring and predicting grains quality stored: Sensors. Internet of Things, and Artificial Intelligence Measurement 188:110609. ISSN 0263-2241. doi:10.1016/j.measurement.2021.110609.
  • Ly, Q. V., X. C. Nguyen, N. C. Le, T. D. Truong, T. T. Hoang, T. J. Park, T. Maqbool, J. Pyo, K. H. Cho, K. S. Lee, et al. 2021. Application of machine learning for eutrophication analysis and algal bloom prediction in an urban river: A 10-year study of the han river, South Korea. Science of the Total Environment 797:149040. doi:10.1016/j.scitotenv.2021.149040.
  • Maione, C., B. L. Batista, A. D. Campiglia, F. Barbosa, and R. M. Barbosa. 2016. Classification of geographic origin of rice by data mining and inductively coupled plasma mass spectrometry. Computers and Electronics in Agriculture 121:101–07. doi:10.1016/j.compag.2015.11.009.
  • Malek, S., F. Miglietta, T. Gobakken, E. Næsset, D. Gianelle, and M. Dalponte. 2019. Prediction of stem diameter and biomass at individual tree crown level with advanced machine learning techniques. IForest - Biogeosciences & Forestry 12 (3):323–29. doi:10.3832/ifor2980-012.
  • Mao, W. L., W. C. Chen, C. T. Wang, and Y. H. Lin. 2020. Recycling waste classification using optimized convolutional neural network. Resources Conservation & Recycling 164 (August):105132. doi:10.1016/j.resconrec.2020.105132.
  • Maponya, M. G., A. van Niekerk, and Z. E. Mashimbye. 2020. Pre-harvest classification of crop types using a sentinel-2 time-series and machine learning. Computers and Electronics in Agriculture 169:105164. ISSN 0168-1699. doi:10.1016/j.compag.2019.105164.
  • Martin-Luengo, M. A. 2011. Renewable raw materials for advanced applications. 2011 World Congress on Sustainable Technologies (WCST), 19–22, doi:10.1109/WCST19361.2011.6114229.
  • Mason, M. G., J. J. Ross, B. A. Babst, B. N. Wienclaw, and C. A. Beveridge. 2014. Sugar demand, not auxin, is the initial regulator of apical dominance. Proceedings of the National Academy of Sciences of the United States of America 111 (16):6092–97. doi:10.1073/pnas.1322045111.
  • Matthews, J. D. 1989. Silvicultural systems, 284. Oxford: Claredon Press.
  • Matthews, S. G., A. L. Miller, T. Plötz, and I. Kyriazakis. 2017. Automated tracking to measure behavioural changes in pigs for health and welfare monitoring. Scientific Reports 7 (1):17582. doi:10.1038/s41598-017-17451-6.
  • Mattsson, J. E. 1990. Basic handling characteristics of wood fuel: Angle of repose, friction against surfaces and tendency to bridge building for different assortments. Scandinavian Journal of Forest Research 5 (1–4):583–97. doi:10.1080/02827589009382641.
  • McKendry, K. 2002. Energy production from biomass (part 1): Overview of biomass. Bioresource Technology 83 (1):37–46. doi:10.1016/S0960-8524(01)00118-3.
  • Milenković, M., N. Milosavljevic, N. Bojović, and S. Val. 2017. Container flow forecasting through neural networks based on metaheuristics. Operational Research 21: 1–33.
  • Mohammadimanesh, F., B. Salehi, M. Mahdianpari, E. Gill, and M. Molinier. 2019. A new fully convolutional neural network for semantic segmentation of polarimetric SAR imagery in complex land cover ecosystem. Isprs Journal of Photogrammetry & Remote Sensing 151:223–36. ISSN 0924-2716. doi:10.1016/j.isprsjprs.2019.03.015.
  • Mohammadi, K., S. Shamshirband, S. Motamedi, D. Petkovi´c, R. Hashim, and M. Gocic. 2015. Extreme learning machine based prediction of daily dew point temperature. Computers and Electronics in Agriculture 117:214–25. doi:10.1016/j.compag.2015.08.008.
  • Mohammed, M., R. Kolapalli, N. Golla, and S. S. Maturi. 2020. Prediction of rainfall using machine learning techniques. International Journal of Scientific & Technology Research 9 (1):3236–40. doi:10.36227/techrxiv.14398304.
  • Mohri, S., and H. Haghshenas. 2017. Modeling the container selection for freight transportation: Case study of Iran. International Journal of Transportation Engineering 5 (1):31–44.
  • Moore Bethany, M., P. Wang, P. Fan, B. Leong, C. A. Schenck, and P. Lloyd. 2019. Robust predictions of specialized metabolism genes through machine learning 2019. Proceedings of the National Academy of Sciences 116 (6):2344–53. doi:10.1073/pnas.1817074116.
  • Morellos, A., X.-E. Pantazi, D. Moshou, T. Alexandridis, R. Whetton, G. Tziotzios, J. Wiebensohn, R. Bill, and A. M. Mouazen. 2016. Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy. Biosystems Engineering 152:104–16. doi:10.1016/j.biosystemseng.2016.04.018.
  • Moshou, D., X.-E. Pantazi, D. Kateris, and I. Gravalos. 2014. Water stress detection based on optical multisensory fusion with a least squares support vector machine classifier. Biosystems Engineering 117:15–22. doi:10.1016/j.biosystemseng.2013.07.008.
  • Munis, R. A., R. O. Almeida, D. A. Camargo, R. B. G. da Silva, J. Wojciechowski, and D. Simões. 2022. Machine learning methods to estimate productivity of collecters: Mechanized timber collecting in Brazil. Forests 13 (7):1068. doi:10.3390/f13071068.
  • Musa, E., F. Doherty, and B. R. Goldsmith. 2022. Accelerating the structure search of catalysts with machine learning. Current Opinion in Chemical Engineering 35:100771. ISSN 2211-3398. doi:10.1016/j.coche.2021.100771.
  • Nag, A., A. Gerritsen, C. Doeppke, and A. E. Harman-Ware. 2021. Machine Learning-Based Classification of Lignocellulosic Biomass from Pyrolysis-Molecular Beam Mass Spectrometry Data. International Journal of Molecular Sciences 22 (8):4107. doi:10.3390/ijms22084107.
  • Nahvi, B., J. Habibi, K. Mohammadi, S. Shamshirband, and O. S. Al Razgan. 2016. Using self-adaptive evolutionary algorithm to improve the performance of an extreme learning machine for estimating soil temperature. Computers and Electronics in Agriculture 124:150–60. doi:10.1016/j.compag.2016.03.025.
  • Namías, R., E. N. Morandi, G. L. Grinblat, J. S. Bianchi, L. C. Uzal, M. G. Larese, and P. M. Granitto. 2018. Seed-per-pod estimation for plant breeding using deep learning Computers and Eletronics in Agriculture. 150:196–204.
  • Narmilan, A., F. Gonzalez, A. S. A. Salgadoe, U. W. L. M. Kumarasiri, H. A. S. Weerasinghe, and B. R. Kulasekara. 2022. Predicting canopy chlorophyll content in sugarcane crops using machine learning algorithms and spectral vegetation indices derived from UAV multispectral imagery. Remote Sensing 14 (5):1140. doi:10.3390/rs14051140.
  • Nasirzadehdizaji, R., Z. Cakir, F. Balik Sanli, S. Abdikan, A. Pepe, and F. Calò. 2021. Sentinel-1 interferometric coherence and backscattering analysis for crop monitoring. Computers and Electronics in Agriculture 185:106118. ISSN 016 1699. doi:https://doi.org/10.1016/j.compag.2021.106118.
  • Niu, M., Y. Hu, S. Sun, and Y. Liu. 2018. A novel hybrid decomposition-ensemble model based on VMD and HGWO for container throughput forecasting, Appl. Applied Mathematical Modelling 57:163–78. doi:10.1016/j.apm.2018.01.014.
  • Nyland, R. D. 2007. Silviculture: Concepts and applications. 2nd ed. Prospect Heights: Waveland Press.
  • Oehmcke, S., L. Li, J. Revenga, T. Nord-Larsen, and K. Trepekli. 2021. Deep learning based 3D point cloud regression for estimating forest biomass. Journal of Computer Vision and Pattern Recognition. Cornell University Publication.
  • Ogawa, T. 1993. Photosynthetic responses to the environment, eds. Yamamoto, H. and Smith, C., 113–25. Rockville: American Society of Plant Physiologist Series.
  • Olatunji, O. O., S. Akinlabi, N. Madushele, and P. A. Adedeji. 2020. Property based biomass feedstock grading using k-Nearest Neighbour technique. Energy 190:116346. ISSN 0360-5442. doi:10.1016/j.energy.2019.116346.
  • Oyebisi, S., and H. Owamah. 2023. Application of machine learning techniques in the prediction of excess lifetime cancer risks of agricultural byproducts used as building and construction materials. Cleaner Waste Systems 5:100088. ISSN 2772-9125. doi:https://doi.org/10.1016/j.clwas.2023.100088.
  • Panda, B. S., P. V. Lasyasri, D. Maneesha, P. Goutham, K. Suresh, and C. Pranavsankar. 2019. A novel approach for weather forecasting using machine learning techniques. Journal of Computing and Communication 11:25–30.
  • Pantazi, X.-E., D. Moshou, T. K. Alexandridis, R. L. Whetton, and A. M. Mouazen. 2016. Wheat yield prediction using machine learning and advanced sensing techniques. Computers and Electronics in Agriculture 121:57–65. doi:10.1016/j.compag.2015.11.018.
  • Pantazi, X.-E., D. Moshou, and C. Bravo. 2016. Active learning system for weed species recognition based on hyperspectral sensing. Biosystems Engineering 146:193–202. doi:10.1016/j.biosystemseng.2016.01.014.
  • Panwar, H. Sep 2020. AquaVision: Automating the detection of waste in water bodies using deep transfer learning. Case Studies in Chemical and Environmental Engineering 2:100026. doi:10.1016/j.cscee.2020.100026.
  • Pan, H., X. Zheng, X. Tian, Y. Geng, X. Zhang, S. Xiao, Z. Gao, Y. Yang, X. Liu, L. Li, et al. 2022. Toward sustainable crop production in China: A co-benefits evaluation. Journal of Cleaner Production 361:132285. ISSN 0959-6526. doi:10.1016/j.jclepro.2022.132285.
  • Parashar, A. 2019. IoT based automated weather report generation and prediction using machine learning. 2019 2nd International Conference on Intelligent Communication and Computational Techniques ICCT 2019, 339–44. doi:10.1109/ICCT46177.2019.8968782.
  • Parolas, I., L. Tavasszy, I. Kourounioti, R. van Duin, and K. Cities. 2017. Prediction of vessel’s estimated time of arrival (ETA) using machine learning—A port of Rotterdam case study. 96th Annual Meeting of the Transportation Research, 8–12.
  • Patil, A., and P. Deka. 2016. An extreme learning machine approach for modeling evapotranspiration using extrinsic inputs. Computers and Electronics in Agriculture 121:385–92. doi:10.1016/j.compag.2016.01.016.
  • Paudel, D., H. Boogaard, A. de Wit, S. Janssen, S. Osinga, C. Pylianidis, and I. N. Athanasiadis. 2021. Machine learning for large-scale crop yield forecasting. Agricultural Systems 187:103016. ISSN 0308-521X. doi:10.1016/j.agsy.2020.103016.
  • Pence, I., K. Kumaş, M. C. Siseci, and A. Akyüz. June 28, 2022. Detailed analysis of animal manure-based CO2 emissions, coal, electricity, thermal energy, and CH4 emissions and using machine learning as a forecasting method: A study from Turkey. PREPRINT (Version 1) available at Research Square. doi:10.21203/rs.3.rs-1648218/v1.
  • Périé, C., and S. de Blois. 2016. Dominant forest tree species are potentially vulnerable to climate change over large portions of their range even at high latitudes. PeerJ 4:e2218. doi:10.7717/peerj.2218.
  • Pierdicca, R., M. Balestra, G. Micheletti, A. Felicetti, and G. Toscano. 2022. Semi-automatic detection and segmentation of wooden pellet size exploiting a deep learning approach. Renewable Energy 197:406–16. ISSN 0960-1481. doi:10.1016/j.renene.2022.07.109.
  • Ping, P., G. Xu, E. Kumala, and J. Gao. 2020. Smart street litter detection and classification based on faster R-CNN and edge computing. International Journal of Software Engineering and Knowledge Engineering 30 (4):537–53. doi:10.1142/S0218194020400045.
  • Pitak, L., K. Laloon, S. Wongpichet, P. Sirisomboon, and J. Posom. 2021. Machine learning-based prediction of selected parameters of commercial biomass pellets using line scan near infrared-hyperspectral image. Processes 9 (2):316. doi:10.3390/pr9020316.
  • Plankenbuhler, T., S. Kolb, F. Grümer, D. Müller, and J. Karl. June 2020. Image-based model for assessment of wood chip quality and mixture ratios. Processes 8 (6):728. Accessed 13 Oct. 2022. Gale Academic OneFile, link.gale.com/apps/doc/A634050532/AONE?u=anon~364015e&sid=sitemap&xid=cded69b6. doi:10.3390/pr8060728.
  • Puttinaovarat, S., and P. Horkaew. 2022. A geospatial platform for crowdsourcing green space area management using GIS and deep learning classification. ISPRS International Journal of Geo-Information 11 (3):208. doi:https://doi.org/10.3390/ijgi11030208.
  • Qu, Y., A. Clausen, and B. N. Jørgensen. 2021. Net photosynthesis prediction by deep learning for commercial greenhouse production. 2021 IEEE 25th International Conference on Intelligent Engineering Systems (INES), 000139–44. doi:10.1109/INES52918.2021.9512919.
  • Rae, A. M., N. R. Street, and M. Rodríguez-Acosta. 2007. Populus trees. In Forest trees, ed. C. Kole, 1–28. Berlin: Springer. doi:10.1007/978-3-540-34541-1_1.
  • Rana, P., and D. Miller. 2019. Machine learning to analyze the social-ecological impacts of natural resource policy: Insights from community forest management in the Indian Himalaya. Environmental Research Letters 14 (2):024008. doi:10.1088/1748-9326/aafa8f.
  • Razeghi, M., A. Hajinezhad, A. Naseri, Y. Noorollahi, and S. F. Moosavian. 2023. An overview of renewable energy technologies for the simultaneous production of high-performance power and heat. Future Energy 2 (2):1–11. doi:10.55670/fpll.fuen.2.2.1.
  • Retschitzegger, S., T. Brunner, and I. Obernberger. 2015. Low temperature corrosion in biomass boilers fired with chemically untreated wood chips and bark. Energy Fuels 29 (6):3913–21. doi:10.1021/acs.energyfuels.5b00365.
  • Robinson, S. L., M. D. Smith, J. E. Richman, K. G. Aukema, and L. P. Wackett. 2020. Machine learning-based prediction of activity and substrate specificity for OleA enzymes in the thiolase superfamily. Synthetic Biology 5 (1):ysaa004. doi:10.1093/synbio/ysaa004.
  • Rodríguez-Rángel, H., D. M. Arias, L. A. Morales-Rosales, V. Gonzalez-Huitron, M. Valenzuela Partida, and J. García. 2022. Machine learning methods modeling carbohydrate-enriched cyanobacteria biomass production in wastewater treatment systems. Energies 15 (7):2500. doi:10.3390/en15072500.
  • Roy Choudhury, M., S. Das, J. Christopher, A. Apan, S. Chapman, N. W. Menzies, and Y. P. Dang. 2021. Improving biomass and grain yield prediction of wheat genotypes on sodic soil using integrated high-resolution multispectral, hyperspectral, 3D point cloud, and machine learning techniques. Remote Sensing 13 (17):3482. doi:10.3390/rs13173482.
  • Rump, T., A. K. Mahlein, U. Steiner, E. C. Oerke, H. W. Dehne, and L. Plümer. 2010. Early detection and classification of plant diseases with support vector machines based on hyperspectral reflectance. Computers and Electronics in Agriculture 74 (1):91–99. doi:10.1016/j.compag.2010.06.009.
  • Safder, U., J. Loy-Benitez, H.-T. Nguyen, and C. Yoo. 2022. A hybrid extreme learning machine and deep belief network framework for sludge bulking monitoring in a dynamic wastewater treatment process. Journal of Water Process Engineering 46:102580. ISSN 2214-7144. doi:10.1016/j.jwpe.2022.102580.
  • Saha, S., S. Bhattacharjee, P. Kumar Shit, N. Sengupta, and B. Bera. 2022. Deforestation probability assessment using integrated machine learning algorithms of Eastern Himalayan foothills (India). Resources, Conservation and Recycling Advances 14:200077. ISSN 2667-3789. doi:10.1016/j.rcradv.2022.200077.
  • Saini, D.K, A. Rai, A. Devi, S. Pabbi, D. Chhabra, J.-S. Chang, and P. Shukla. 2021. A multi-objective hybrid machine learning approach-based optimization for enhanced biomass and bioactive phycobiliproteins production in Nostoc sp. CCC-403. Bioresource Technology 329:124908. ISSN 0960-8524. doi:10.1016/j.biortech.2021.124908.
  • Salman, A. G., B. Kanigoro, and Y. Heryadi. 2016. Weather forecasting using deep learning techniques. ICACSIS 2015 - 2015 International Conference on Advanced Computer Science and Information Systems 281–85. doi:10.1109/ICACSIS.2015.7415154.
  • Sangeetha J., P. Govindarajan. 2023. Prediction of agricultural waste compost maturity using fast regions with convolutional neural network (R-CNN), Materials Today: Proceedings. doi:10.1016/j.matpr.2023.01.112.
  • Sanni, O., O. Adeleke, K. Ukoba, J. Ren, and T.-C. Jen. 2022. Application of machine learning models to investigate the performance of stainless steel type 904 with agricultural waste. Journal of Materials Research and Technology 20:4487–99. ISSN 2238-7854. doi:10.1016/j.jmrt.2022.08.076.
  • Schucknecht, A., B. Seo, A. Krämer, S. Asam, C. Atzberger, and R. Kiese. 2022. Estimating dry biomass and plant nitrogen concentration in pre-Alpine grasslands with low-cost UAS-borne multispectral data – a comparison of sensors, algorithms, and predictor sets. Biogeosciences 19 (10):2699–727. doi:10.5194/bg-19-2699-2022.
  • Searle, S. Y., and C. J. Malins. 2014. Will energy crop yields meet expectations? Biomass and Bioenergy 65:3–12. doi:10.1016/j.biombioe.2014.01.001.
  • Septiyadi, E., E. Firmansyah, and F. Danang Wijaya. 2017. Preliminary design of biomass fuel storage on a thermoelectric based biomass-electric energy conversion. 2017 7th International Annual Engineering Seminar (InAes) 1–5. doi:10.1109/INAES.2017.8068572.
  • Serva, L., L. Magrin, G. Marchesini, and I. Andrighetto. 2022. Short communication: Prognostic values of a multiparametric risk score in maize silage undergoing different ensiling conditions. Agronomy 12 (4):774. doi:10.3390/agronomy12040774.
  • Sevcik, M., J. Skvaril, and E. Tomas Aparicio. 2019. Applications of hyperspectral imaging and machine learning methods for real-time classification of waste stream components. Presented at the 19th International Conference on Near Infrared Spectroscopy - NIR 2019, Gold Coast, Australia, 15-20 September 2019.
  • Shekhawat, K., S. S. Rathore, B. K. Kandpal, O. P. Premi, D. Singh, and B. S. Chauhan. 2016. Crop establishment techniques affect productivity, sustainability, and soil health under mustard-based cropping systems of Indian semi-arid regions. Soil and Tillage Research 158:137–46. ISSN 0167-1987. doi:10.1016/j.still.2015.12.008.
  • Shyur, H. J., J. T. Luxhoj, and T. P. Williams. 1996. Using neural networks to predict component inspection requirements for aging aircraft. Computers & Industrial Engineering 30 (2):257–67. doi:10.1016/0360-8352(95)00170-0.
  • Silva, J. P. M., M. Luiza, M. da Silva, A. R. de Mendonça, G. F. da Silva, A. A. de Barros Junior, E. F. da Silva, M. Otone Aguiar, and J. Silva Santos. 2021. Nívea Maria Mafra Rodrigues, prognosis of forest production using machine learning techniques. Information Processing in Agriculture ISSN 2214-3173. doi:10.1016/j.inpa.2021.09.004.
  • Singh, S., and Sannihit. 2022. Sustainable and smart agriculture: A holistic approach. 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), 543–47. doi:10.1109/ICACITE53722.2022.9823634.
  • Siqueira, V. S., M. M. Borges, R. G. Furtado, C. N. Dourado, and R. da Costa. 2021. Artificial intelligence applied to support medical decisions for the automatic analysis of echocardiogram images: A systematic review. Artificial Intelligence in Medicine 120 (5):102165. doi:10.1016/j.artmed.2021.102165.
  • Sivasothy, P., M. Andres, and G. Corbin. 2018. Machine learning based filling level estimation for bulk solid silos. Journal of the Acoustical Society of America 144 (3_Supplement):1685. doi:10.1121/1.5067492.
  • Sonoki, T., K. Takahashi, H. Sugita, M. Hatamura, Y. Azuma, T. Sato, S. Suzuki, N. Kamimura, and E. Masai. 2018. Glucose-free cis,cis-muconic acid production via new metabolic designs corresponding to the heterogeneity of lignin. ACS Sustainable Chemistry & Engineering 6 (1):1256–64. doi:10.1021/acssuschemeng.7b03597.
  • Srisruthi, S., N. Swarna, G. M. S. Ros, and E. Elizabeth. 2016. Sustainable agriculture using eco-friendly and energy efficient sensor technology. 2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), 1442–46. doi:10.1109/RTEICT.2016.7808070.
  • Sterkens, W., D. Diaz-Romero, T. Goedemé, W. Dewulf, and J. R. Peeters. May 2021. Detection and recognition of batteries on X-Ray images of waste electrical and electronic equipment using deep learning. Resources Conservation & Recycling 168:105246. doi:10.1016/j.resconrec.2020.
  • Stucky, B. J., R. Guralnick, J. Deck, E. G. Denny, K. Bolmgren, and R. Walls. 2018. The plant phenology ontology: A new informatics resource for large-scale integration of plant phenology data. Frontiers in Plant Science 9:517. doi:10.3389/fpls.2018.00517.
  • Suh, D., J. W. Lee, S. Choi, and Y. Lee. 2021. Recent applications of deep learning methods on evolution- and contact-based protein structure prediction. International Journal of Molecular Sciences 22 (11):6032. doi:10.3390/ijms22116032.
  • Suresha, A. M. October 2020. Machine learning for mining weather patterns and weather forecasting. ResearchGate 95 (6):42–51. doi:10.13140/RG.2.2.22296.42243.
  • Takshak, S., and S. B. Agrawal. 2019. Defense potential of secondary metabolites in medicinal plants under UV-B stress. Journal of Photochemistry and Photobiology B: Biology 193:51–88. PMID 30818154. doi:10.1016/j.jphotobiol.2019.02.002.
  • Tan, H., C. W. Anderson, C. V. Chandra, I. Ray, and J. L. Chavez 2019. Machine learning-based fusion studies of rainfall estimation from spaceborne and ground-based radars.
  • Thimm, O., O. Bläsing, Y. Gibon, A. Nagel, S. Meyer, P. Krüger, J. Selbig, L. A. Müller, S. Y. Rhee, M. Stitt et al. 2004. MAPMAN: A user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. The Plant Journal: For Cell and Molecular Biology. 37 (6):914–39. doi:10.1111/j.1365-313x.2004.02016.x.
  • Tian, H., J. Zhu, X. He, X. Chen, Z. Jian, C. Li, Q. Ou, Q. Li, G. Huang, C. Liu, et al. 2022. Using machine learning algorithms to estimate stand volume growth of Larix and quercus forests based on national-scale forest inventory data in China. Forest Ecosystems 9:100037. ISSN 2197-5620. doi:10.1016/j.fecs.2022.100037.
  • Tiitta, M., V. Tiitta, J. Heikkinen, R. Lappalainen, and L. Tomppo. Feb 17, 2020. Classification of wood chips using electrical impedance spectroscopy and machine learning. Sensors (Basel) 20 (4):1076. PMID: 32079155; PMCID: PMC7070823. doi:10.3390/s20041076.
  • Toklu, E. 2017. Biomass energy potential and utilization in Turkey. Renewable Energy 107:235–44. ISSN 0960-1481. doi:10.1016/j.renene.2017.02.008.
  • Trenberth, K. E., J. T. Fasullo, and J. Kiehl. 2009. Earth’s global energy budget. Bulletin of the American Meteorological Society 90:311–324. doi:10.1175/2008BAMS2634.1. 3
  • Vamsi, T. S., S. K. Terlapu, M. V. Subbarao, and C. Grandhi. 2022. Crop protection and establishment of E-Farmers market. 2022 Second International Conference on Power, Control and Computing Technologies (ICPC2T), 1–4. doi:10.1109/ICPC2T53885.2022.9777040.
  • Vo, A. H., L. Hoang Son, M. T. Vo, and T. Le. 2019. A novel framework for trash classification using deep transfer learning. Institute of Electrical and Electronics Engineers Access 7:178631–39. doi:10.1109/ACCESS.2019.2959033.
  • Wallerman, J. 2020. Nation-wide mapping of tree growth using repeated airborne laser scanning. IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium, 4822–25. doi:10.1109/IGARSS39084.2020.9323955.
  • Wang, Y., X. Dai, D. Fu, P. Li, and B. Du. 2022. PGD: A machine learning-based photosynthetic-related gene detection approach. BMC Bioinformatics 23 (1):183. doi:https://doi.org/10.1186/s12859-022-04722-x.
  • Wang, G., Q. Li, and J. You. 2008. On wheat storage period estimation using Markov_ chain analysis. 2008 6th IEEE International Conference on Industrial Informatics, 882–87. doi:10.1109/INDIN.2008.4618225.
  • Wan, L., S. Li, Y. Chen, Z. He, and Y. Shi. 2022. Application of deep learning in land use classification for soil erosion using remote sensing. Frontiers in Earth Science 10:849531. doi:10.3389/feart.2022.849531.
  • Wan, Z., Q.-D. Wang, D. Liu, and J. Liang. 2019. Accelerating the optimization of enzyme-catalyzed synthesis conditions via machine learning and reactivity descriptors. Journal of Organic & Biomolecular Chemistry. 19 (28):6267. 2021. doi:10.1039/D1OB01066B.
  • Waterman, M. J., J. Bramley-Alves, R. E. Miller, P. A. Keller, and S. A. Robinson. 2018. Photoprotection enhanced by red cell wall pigments in three East Antarctic mosses. Biological Research. 51 (1):49. PMC 6247747. PMID 30463628. doi:10.1186/s40659-018-0196-1.
  • Wild, M., D. Folini, C. Schär, N. Loeb, E. G. Dutton, and G. König-Langlo. 2013. The global energy balance from a surface perspective. Climate Dynamics 40 (11–12):3107–34. doi:10.1007/s00382-012-1569-8.
  • Windrim, L., M. Bryson, M. McLean, J. Randle, and C. Stone. 2019. Automated mapping of woody debris over collected forest plantations using UAVs, high-resolution imagery, and machine learning. Remote Sensing 11 (6):733. doi:10.3390/rs11060733.
  • Wongchai, W., T. Onsree, N. Sukkam, A. Promwungkwa, and N. Tippayawong. 2022. Machine learning models for estimating above ground biomass of fast growing trees. Expert Systems with Applications 199:117186. ISSN 0957-4174. doi:10.1016/j.eswa.2022.117186.
  • Wu, Z., S. B. J. Kan, R. D. Lewis, B. J. Wittmann, and H. Frances. 2019. Arnold machine learning-assisted directed protein evolution with combinatorial libraries. Proceedings of the National Academy of Sciences 116 (18):8852–58. doi:10.1073/pnas.1901979116.
  • Wu, Y., X. Zhang, Y. Xiao, and J. Feng. 2020. Attention neural network for water image classification under IoT environment. Applied Sciences 10 (3):030909. doi:https://doi.org/10.3390/app10030909.
  • Xie, Y., and N. Huynh. 2010. Kernel-based machine learning models for predicting daily truck volume at seaport terminals. Journal of Transportation Engineering 136 (12):1145 1152. doi:10.1061/(ASCE)TE.1943-5436.0000186.
  • Xue, B. 2012. Lidar and Machine Learning Estimation of Hardwood Forest Biomass in Mountainous and Bottomland Environments. Thesis, Northwest University, Bachelor of Science in Management of Resource and Environment and Urban-Rural Planning.
  • Xue, B. 2015. Lidar and Machine Learning Estimation of Hardwood Forest Biomass in Mountainous and Bottomland Environments. Theses and Dissertations. 1274. http://scholarworks.uark.edu/etd/1274.
  • Yang, Z., S. Gao, F. Xiao, G. Li, Y. Ding, Q. Guo, M. J. Paul, and Z. Liu. 2020. Leaf to panicle ratio (LPR): A new physiological trait indicative of source and sink relation in japonica rice based on deep learning. Journal of Plant Methods 16 (1):117. doi:10.1186/s13007-020-00660-y.
  • Yang, Z., J. Tian, Z. Wang, and K. Feng. 2022. Monitoring the photosynthetic performance of grape leaves using a hyperspectral-based machine learning model. The European Journal of Agronomy 140:126589. ISSN 1161-0301. doi:10.1016/j.eja.2022.126589.
  • Yang, F., M. A. White, A. R. Michaelis, K. Ichii, H. Hashimoto, P. Votava, A.-X. Zhu, and R. R. Nemani. Nov, 2006. Prediction of continental-scale evapotranspiration by combining MODIS and AmeriFlux data through support vector machine. IEEE Transactions on Geoscience and Remote Sensing 44(11):3452–61. doi:10.1109/TGRS.2006.876297.
  • Yang, P., Q. Zhao, and X. Cai. 2020. Machine learning based estimation of land productivity in the contiguous US using biophysical predictors. Environmental Research Letters 15 (7):074013. doi:10.1088/1748-9326/ab865f.
  • Yousafzai, A., W. Manzoor, G. Raza, T. Mahmood, F. Rehman, R. Hadi, S. Shah, M. Amin, A. Akhtar, S. Bashir, et al. Oct 29, 2021. Forest yield prediction under different climate change scenarios using data intelligent models in Pakistan. Brazilian Journal of Biology 84:e253106. PMID: 34730700. doi:10.1590/1519-6984.253106.
  • Zahraee, S. M., S. Rahimpour Golroudbary, N. Shiwakoti, and P. Stasinopoulos. 2022. Palm oil biomass global supply chain: Environmental emissions vs. technology development of maritime transportation. Procedia CIRP 105:817–22. ISSN 2212-8271. doi:10.1016/j.procir.2022.02.135.
  • Zambrano, J., O. Samuelsson, and B. Carlsson. 2019. Machine learning techniques for monitoring the sludge profile in a secondary settler tank. Applied Water Science 9 (6):146. doi:10.1007/s13201-019-1018-5.
  • Zhang, X.-Y., Z. Huang, X. Su, A. Siu, Y. Song, D. Zhang, and Q. Fang. 2020. Machine learning models for net photosynthetic rate prediction using poplar leaf phenotype data. PLoS ONE 15 (2):e0228645. doi:10.1371/journal.pone.0228645.
  • Zhang, Y., J. Ma, S. Liang, X. Li, and M. Li. 2020. An evaluation of eight machine learning Regression algorithms for forest aboveground biomass estimation from multiple satellite data products. Remote Sensing 12 (24):4015. doi:10.3390/rs12244015.
  • Zhang, J., S. D. Petersen, T. Radivojevic, A. Ramirez, A. Pérez-Manríquez, E. Abeliuk, B. J. Sánchez, Z. Costello, Y. Chen, M. J. Fero et al. 2020. Combining mechanistic and machine learning models for predictive engineering and optimization of tryptophan metabolism. Nature Communications. 11 (1):1–13. doi:10.1038/s41467-020-17910-1.
  • Zhang, Z., M. Pope, N. Shakoor, R. Pless, T. C. Mockler, and A. Stylianou. 2022. Comparing deep learning approaches for understanding genotype × phenotype interactions in biomass sorghum. Frontiers in Artificial Intelligence 5:872858. doi:10.3389/frai.2022.872858.
  • Zhang, F., X. Tian, H. Zhang, and M. Jiang. 2022. Estimation of aboveground carbon density of forests using deep learning and Multisource remote sensing. Remote Sensing 14 (13):3022. doi:10.3390/rs14133022.
  • Zhang, H., A. Yin, X. Yang, M. Fan, S. Shao, J. Wu, P. Wu, M. Zhang, and C. Gao. 2021. Use of machine-learning and receptor models for prediction and source apportionment of heavy metals in coastal reclaimed soils. Ecological Indicators 122:107233. ISSN 1470-160X. doi:10.1016/j.ecolind.2020.107233.
  • Zheng, C., A. Abd-Elrahman, V. Whitaker, and C. Dalid. 2022. Prediction of strawberry dry biomass from UAV multispectral imagery using multiple machine learning methods. Remote Sensing 14 (18):4511. doi:10.3390/rs14184511.
  • Zheng, K., Y. Bo, Y. Bao, X. Zhu, J. Wang, and Y. Wang. 2021. A machine learning model for photorespiration response to multi-factors. Horticulturae 7 (8):207. doi:10.3390/horticulturae7080207.
  • Zheng, X. T., Y. L. Chen, X. H. Zhang, M. L. Cai, Z. C. Yu, and C. L. Peng. 2019. ANS-deficient Arabidopsis is sensitive to high light due to impaired anthocyanin photoprotection. Functional Plant Biology 46 (8):756–65. PMID 31023420. doi:10.1071/FP19042.
  • Zhi, W., D. Feng, W. P. Tsai, G. Sterle, A. Harpold, C. Shen, and L. Li. 2021. From hydrometeorology to river water quality: Can a deep learning model predict dissolved oxygen at the continental scale? Environmental Science and Technology 55 (4):2357–68. doi:https://doi.org/10.1021/acs.est.0c06783.
  • Zubler, A. V., and J. Y. Yoon. Nov 29, 2020. Proximal methods for plant stress detection using optical sensors and machine learning. Biosensors (Basel) 10 (12):193. PMID: 33260412; PMCID: PMC7760370. doi:10.3390/bios10120193.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.