186
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of secondary flow relative molecular mass on the performance of the ejector for PEMFC anode system: A quantitative analysis

ORCID Icon, &
Pages 1447-1462 | Received 21 Apr 2023, Accepted 31 Aug 2023, Published online: 15 Sep 2023

References

  • Abbou, S., J. Dillet, D. Spernjak, R. Mukundan, R. L. Borup, G. Maranzana, and O. Lottin. 2015. High potential Excursions during PEM fuel cell operation with dead-ended anode. Journal of the Electrochemical Society 162 (10):F1212–F20. doi:10.1149/2.0511510jes.
  • Besagni, G., R. Mereu, F. Inzoli, and P. Chiesa. 2017. Application of an integrated lumped parameter-CFD approach to evaluate the ejector-driven anode recirculation in a PEM fuel cell system, Appl. Applied Thermal Engineering 121:628–51. doi:10.1016/j.applthermaleng.2017.04.111.
  • Bian, J., Y. Zhang, Y. Liu, L. Gong, and X. Cao. 2023. Structural optimization of hydrogen recirculation ejector for proton exchange membrane fuel cells considering the boundary layer separation effect. Journal of Cleaner Production 397:136535. doi:10.1016/j.jclepro.2023.136535.
  • Brunner, D. A., S. Marcks, M. Bajpai, A. K. Prasad, and S. G. Advani. 2012. Design and characterization of an electronically controlled variable flow rate ejector for fuel cell applications. International Journal of Hydrogen Energy 37 (5):4457–66. doi:10.1016/j.ijhydene.2011.11.116.
  • Chen, B., W. Ke, M. Luo, J. Wang, Z. Tu, M. Pan, H. Zhang, X. Liu, and W. Liu. 2015. Operation characteristics and carbon corrosion of PEMFC (proton exchange membrane fuel cell) with dead-ended anode for high hydrogen utilization. Energy 91:799–806. doi:10.1016/j.energy.2015.08.083.
  • Dadvar, M., and E. Afshari. 2014. Analysis of design parameters in anodic recirculation system based on ejector technology for PEM fuel cells: A new approach in designing. International Journal of Hydrogen Energy 39 (23):12061–73. doi:10.1016/j.ijhydene.2014.06.046.
  • Du, Z., Q. Liu, X. Wang, and L. Wang. 2021. Performance investigation on a coaxial-nozzle ejector for PEMFC hydrogen recirculation system. International Journal of Hydrogen Energy 46 (76):38026–39. doi:10.1016/j.ijhydene.2021.09.048.
  • Genc, O., B. Timurkutluk, and S. Toros. 2019. Performance evaluation of ejector with different secondary flow directions and geometric properties for solid oxide fuel cell applications. Journal of Power Sources 421:76–90. doi:10.1016/j.jpowsour.2019.03.010.
  • Genc, O., S. Toros, and B. Timurkutluk. 2017. Determination of optimum ejector operating pressures for anodic recirculation in SOFC systems. International Journal of Hydrogen Energy 42 (31):20249–59. doi:10.1016/j.ijhydene.2017.06.179.
  • Guo, L., Z. Li, R. Outbib, and F. Gao. 2023. Function approximation reinforcement learning of energy management with the fuzzy REINFORCE for fuel cell hybrid electric vehicles. Energy and AI 13:100246. doi:10.1016/j.egyai.2023.100246.
  • Han, J., J. Feng, T. Hou, and X. Peng. 2021. Performance investigation of a multi-nozzle ejector for proton exchange membrane fuel cell system. International Journal of Energy Research 45 (2):3031–48. doi:10.1002/er.5996.
  • Han, J., B. Zhao, Z. Pang, J. Feng, and X. Peng. 2022. Transient characteristics investigation of the integrated ejector-driven hydrogen recirculation by multi-component CFD simulation. International Journal of Hydrogen Energy 47 (67):29053–68. doi:10.1016/j.ijhydene.2022.06.236.
  • Henke, M., S. Hillius, M. Riedel, J. Kallo, and K. A. Friedrich. 2016. Gas recirculation at the hydrogen Electrode of Solid Oxide fuel cell and Solid Oxide Electrolysis cell systems. Fuel Cells 16 (5):584–90. doi:10.1002/fuce.201500114.
  • Hou, M., F. Chen, and Y. Pei. 2023. Optimization of geometric parameters of ejector for fuel cell system based on multi-objective optimization method. International Journal of Green Energy 1–16. doi:10.1080/15435075.2023.2195919.
  • Hwang, J.-J. 2014. Passive hydrogen recovery schemes using a vacuum ejector in a proton exchange membrane fuel cell system. Journal of Power Sources 247:256–63. doi:10.1016/j.jpowsour.2013.08.126.
  • Jianmei, F., Z. Qingqing, H. Tianfang, and P. Xueyuan. 2021. Dynamics characteristics analysis of the oil-free scroll hydrogen recirculating pump based on multibody dynamics simulation. International Journal of Hydrogen Energy 46 (7):5699–713. doi:10.1016/j.ijhydene.2020.11.065.
  • Koski, P., L. C. Perez, and J. Ihonen. 2015. Comparing anode gas recirculation with hydrogen Purge and Bleed in a novel PEMFC Laboratory Test cell Configuration. Fuel Cells 15 (3):494–504. doi:10.1002/fuce.201400102.
  • Kuo, J.-K., and C.-Y. Hsieh. 2021. Numerical investigation into effects of ejector geometry and operating conditions on hydrogen recirculation ratio in 80 kW PEM fuel cell system. Energy 233:121100. doi:10.1016/j.energy.2021.121100.
  • Lee, H., S. Jegal, and S. J. Song. 2017. Analysis and measurement of relative humidity effects on ejector performance. Journal of Mechanical Science and Technology 31 (9):4237–44. doi:10.1007/s12206-017-0822-9.
  • Li, F., J. Du, L. Zhang, J. Li, G. Li, G. Zhu, M. Ouyang, J. Chai, and H. Li. 2017. Experimental determination of the water vapor effect on subsonic ejector for proton exchange membrane fuel cell (PEMFC. International Journal of Hydrogen Energy 42 (50):29966–70. doi:10.1016/j.ijhydene.2017.06.226.
  • Li, Y., J. Deng, and L. Ma. 2019. Experimental study on the primary flow expansion characteristics in transcritical CO2 two-phase ejectors with different primary nozzle diverging angles. Energy 186:115839. doi:10.1016/j.energy.2019.07.169.
  • Liu, Q., Z. Xu, A. Wang, Z. Ping, and L. Wang. 2022. Weight analysis on geometric parameters of ejector under high back pressure condition of SOFC recirculation system. International Journal of Hydrogen Energy 47 (63):27150–65. doi:10.1016/j.ijhydene.2022.06.069.
  • Liu, S., T. Chen, and Y. Xie. 2020. A two-dimensional analytical model of PEMFC with dead-ended anode. International Journal of Green Energy 17 (4):255–73. doi:10.1080/15435075.2020.1722133.
  • Liu, Y., X. Luo, Z. Tu, and S. H. Chan. 2021. Droplet dynamics in a proton exchange membrane fuel cell with ejector-based recirculation. Energy & Fuels 35 (14):11533–44. doi:10.1021/acs.energyfuels.1c01623.
  • Liu, Z., Z. Liu, K. Jiao, Z. Yang, X. Zhou, and Q. Du. 2020. Numerical investigation of ejector transient characteristics for a 130-kW PEMFC system. International Journal of Energy Research 44 (5):3697–710. doi:10.1002/er.5156.
  • Ma, T., M. Cong, Y. Meng, K. Wang, D. Zhu, and Y. Yang. 2021. Numerical studies on ejector in proton exchange membrane fuel cell system with anodic gas state parameters as design boundary. International Journal of Hydrogen Energy 46 (78):38841–53. doi:10.1016/j.ijhydene.2021.09.148.
  • Maghsoodi, A., E. Afshari, and H. Ahmadikia. 2014. Optimization of geometric parameters for design a high-performance ejector in the proton exchange membrane fuel cell system using artificial neural network and genetic algorithm, Appl. Applied Thermal Engineering 71 (1):410–18. doi:10.1016/j.applthermaleng.2014.06.067.
  • Pei, P., P. Ren, Y. Li, Z. Wu, D. Chen, S. Huang, and X. Jia. 2019. Numerical studies on wide-operating-range ejector based on anodic pressure drop characteristics in proton exchange membrane fuel cell system, Appl. Applied Energy 235:729–38. doi:10.1016/j.apenergy.2018.11.005.
  • Rao, S. M. V., and G. Jagadeesh. 2015. Studies on the effects of varying secondary gas properties in a low entrainment ratio supersonic ejector, Appl. Applied Thermal Engineering 78:289–302. doi:10.1016/j.applthermaleng.2014.12.053.
  • Reiser, C. A., L. Bregoli, T. W. Patterson, J. S. Yi, J. D. L. Yang, M. L. Perry, and T. D. Jarvi. 2005. A reverse-current decay mechanism for fuel cells. Electrochemical and Solid-State Letters 8 (6):A273–A76. doi:10.1149/1.1896466.
  • Rogie, B., C. Wen, M. R. Kaern, and E. Rothuizen. 2021. Optimisation of the fuelling of hydrogen vehicles using cascade systems and ejectors. International Journal of Hydrogen Energy 46 (14):9567–79. doi:10.1016/j.ijhydene.2020.12.098.
  • Singer, G., G. Gappmayer, M. Macherhammer, P. Pertl, and A. Trattner. 2022. A development toolchain for a pulsed injector-ejector unit for PEM fuel cell applications. International Journal of Hydrogen Energy 47 (56):23818–32. doi:10.1016/j.ijhydene.2022.05.177.
  • Song, Y., X. Wang, L. Wang, F. Pan, W. Chen, and F. Xi. 2021. A twin-nozzle ejector for hydrogen recirculation in wide power operation of polymer electrolyte membrane fuel cell system, Appl. Applied Energy 300:117442. doi:10.1016/j.apenergy.2021.117442.
  • Song, Y., C. Zhang, F. Xi, L. Wang, X. Wang, Nitrogen influence on the performance of ejector based PEMFC hydrogen recirculation system. 2021 36th Youth Academic Annual Conference of Chinese Association of Automation (YAC), 2021: 570–75. doi:10.1109/YAC53711.2021.9486532.
  • Sun, W., H. Zhang, L. Jia, and H. Xue. 2022. Study on multicomponent and multiphase of the ejector for proton exchange membrane fuel cell hydrogen recirculation. Journal of Thermal Analysis and Calorimetry 147 (23):13681–97. doi:10.1007/s10973-022-11548-5.
  • Tao, H., S. Hua, K. Wu, S. Wu, Q. Liu, and K. Jiao. 2022. Two-dimensional simulation of purge processes for dead-ended H2/O2 proton exchange membrane fuel cell. International Journal of Green Energy 1–18. doi:10.1080/15435075.2022.2040508.
  • Wang, J., H. Jiang, G. Chen, H. Wang, L. Lu, J. Liu, and L. Xing. 2023. Integration of multi-physics and machine learning-based surrogate modelling approaches for multi-objective optimization of deformed GDL of PEM fuel cells. Energy and AI 14:100261. doi:10.1016/j.egyai.2023.100261.
  • Wang, X., Y. Lu, B. Zhang, J. Liu, and S. Xu. 2022. Experimental analysis of an ejector for anode recirculation in a 10 kW polymer electrolyte membrane fuel cell system. International Journal of Hydrogen Energy 47 (3):1925–39. doi:10.1016/j.ijhydene.2021.10.140.
  • Wang, X., S. Xu, and C. Xing. 2019. Numerical and experimental investigation on an ejector designed for an 80 kW polymer electrolyte membrane fuel cell stack. Journal of Power Sources 415:25–32. doi:10.1016/j.jpowsour.2019.01.039.
  • Xia, Z., H. Chen, R. Zhang, L. Chu, T. Zhang, and P. Pei. 2022. Multiple effects of non-uniform channel width along the cathode flow direction based on a single PEM fuel cell: An experimental investigation. Journal of Power Sources 549:232080. doi:10.1016/j.jpowsour.2022.232080.
  • Xia, Z., H. Chen, T. Zhang, and P. Pei. 2022. Effect of channel-rib width ratio and relative humidity on performance of a single serpentine PEMFC based on electrochemical impedance spectroscopy. International Journal of Hydrogen Energy 47 (26):13076–86. doi:10.1016/j.ijhydene.2022.02.047.
  • Xu, Y., G. Chang, R. Fan, and T. Cai. 2023. Effects of various operating conditions and optimal ionomer-gradient distribution on temperature-driven water transport in cathode catalyst layer of PEMFC. Chemistry Engineering Journal 451:138924. doi:10.1016/j.cej.2022.138924.
  • Xue, H., L. Wang, H. Zhang, L. Jia, and J. Ren. 2020. Design and investigation of multi-nozzle ejector for PEMFC hydrogen recirculation. International Journal of Hydrogen Energy 45 (28):14500–16. doi:10.1016/j.ijhydene.2020.03.166.
  • Yang, Y., W. Du, T. Ma, W. Lin, M. Cong, H. Yang, and Z. Yu. 2020. Numerical studies on ejector structure optimization and performance prediction based on a novel pressure drop model for proton exchange membrane fuel cell anode. International Journal of Hydrogen Energy 45 (43):23343–52. doi:10.1016/j.ijhydene.2020.06.068.
  • Yin, L., Q. Li, W. Chen, T. Wang, and H. Liu. 2019. Experimental analysis of optimal performance for a 5 kW PEMFC system. International Journal of Hydrogen Energy 44 (11):5499–506. doi:10.1016/j.ijhydene.2018.08.157.
  • Yin, Y., M. Fan, K. Jiao, Q. Du, and Y. Qin. 2016. Numerical investigation of an ejector for anode recirculation in proton exchange membrane fuel cell system. Energy Conversion and Management 126:1106–17. doi:10.1016/j.enconman.2016.09.024.
  • Zhang, Q., J. Feng, Q. Zhang, and X. Peng. 2019. Performance prediction and evaluation of the scroll-type hydrogen pump for FCVs based on CFD–Taguchi method. International Journal of Hydrogen Energy 44 (29):15333–43. doi:10.1016/j.ijhydene.2019.04.019.
  • Zhao, Y., Y. Liu, G. Liu, Q. Yang, L. Li, and Z. Gao. 2022. Air and hydrogen supply systems and equipment for PEM fuel cells: A review. International Journal of Green Energy 19 (4):331–48. doi:10.1080/15435075.2021.1946812.
  • Zhu, Y., P. Jiang, Geometry optimization study of ejector in anode recirculation Solid Oxygen fuel cell system. 2011 6th Ieee Conference on Industrial Electronics and Applications (Iciea), Ieee, New York, 2011: 51–55. https://www.webofscience.com/wos/alldb/summary/97ec6be7-59b3-4a3e-94a7-38b36a82f614-51be1772/relevance/1 (accessed September 27, 2022).
  • Zhu, Y., and Y. Li. 2009. New theoretical model for convergent nozzle ejector in the proton exchange membrane fuel cell system. Journal of Power Sources 191 (2):510–19. doi:10.1016/j.jpowsour.2009.02.014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.