190
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Performance enhancement of hydrokinetic turbine using augmentation techniques: a review

&
Pages 1667-1694 | Received 12 Jan 2023, Accepted 07 Sep 2023, Published online: 21 Sep 2023

References

  • Alidadi, M., and S. Calisal. 2014. A numerical method for calculation of power output from ducted vertical axis hydro-current turbines. Computers and Fluids 105:76–81. doi:10.1016/j.compfluid.2014.09.009.
  • Altan, B. D., and M. Atilgan. 2010. The use of a curtain design to increase the performance level of a Savonius wind rotors. Renewable Energy 35 (4):821–29. doi:10.1016/j.renene.2009.08.025.
  • Ambarita, E., R. A. Evi, and R. Irwansyah. 2022. Experimental study on the optimum design of diffuser-augmented horizontal-axis tidal turbine. 6 (5):776–86. doi:10.1093/ce/zkac039.
  • Ambarita, E. E., I. Harinaldi, and Nasruddin. 2021. Computational study on multi-objective optimization of the diffuser augmented horizontal axis tidal turbine. Journal of Marine Science and Technology (Japan) 26 (4):1237–50. doi:10.1007/s00773-021-00812-2.
  • Ånund, K. 2020. Hydroelectric power. In Future Energy, ed Trevor M. Letcher, 315–30. 3rd ed. Elsevier. ISBN 9780081028865. doi:10.1016/B978-0-08-102886-5.00015-3.
  • Anyi, M., and B. Kirke. 2010. Evaluation of small axial flow hydrokinetic turbines for remote communities. Energy for Sustainable Development 14 (2):110–16. doi:10.1016/j.esd.2010.02.003.
  • Arrieta, E. L. C., and A. R. Clemente. 2020. Computational fluid dynamic simulation of vertical axis hydrokinetic turbines. Computational Fluid Dynamics Simulations, IntechOpen. doi:10.5772/intechopen.89184.
  • Barbarić, M., and Z. Guzović. 2020. Investigation of the possibilities to improve hydrodynamic performances of micro-hydrokinetic turbines. Energies 13:17. doi:10.3390/en13174560.
  • Belloni, C. S. K., R. H. J. Willden, and G. T. Houlsby. 2017. An investigation of ducted and open-centre tidal turbines employing CFD-Embedded BEM. Renewable Energy 108:622–34. doi:10.1016/j.renene.2016.10.048.
  • Chaudhari, V. N., and S. P. Shah. 2023. Numerical investigation on the performance of an innovative airfoil-bladed Savonius hydrokinetic turbine (ABSHKT) with Deflector. International Journal of Thermofluids 17 (February). doi: 10.1016/j.ijft.2023.100279.
  • Chen, B., S. Cheng, T. C. Su, and H. Zhang. 2018. Numerical investigation of channel effects on a vertical-axis tidal turbine rotating at variable speed. Ocean Engineering 163 (August 2017):358–68. doi:10.1016/j.oceaneng.2018.06.015.
  • Dines, K., and S. Sarkar. 2017. Modeling of flow-induced stress on helical Savonius hydrokinetic turbine with the effect of augmentation technique at different operating conditions. Renewable Energy 111:740–48. doi:10.1016/j.renene.2017.05.006.
  • Elbatran, A. H. A., O. B. Yaakob, Y. M. Ahmed, and F. B. Abdullah. 2016. Augmented diffuser for horizontal axis marine current turbine. International Journal of Power Electronics and Drive Systems 7 (1):235–45. doi:10.11591/ijpeds.v7.i1.pp235-245.
  • Elbatran, A. H., O. B. Yaakob, Y. M. Ahmed, and M. R. Jalal. 2015. Novel approach of bidirectional diffuser-augmented channels system for enhancing hydrokinetic power generation in channels. Renewable Energy 83:809–19. doi:10.1016/j.renene.2015.05.038.
  • Elbatran, A. H., M. A. Yasser, and S. S. Ahmed. 2017. Performance study of ducted nozzle Savonius water turbine, comparison with conventional Savonius turbine. Energy 134:566–84. doi:10.1016/j.energy.2017.06.041.
  • Fleming, C. F., and R. H. J. Willden. 2016. Analysis of bi-directional ducted tidal turbine performance. International Journal of Marine Energy 16:162–73. doi:10.1016/j.ijome.2016.07.003.
  • Gaden, D. L. F., and E. L. Bibeau. 2010. A numerical investigation into the effect of diffusers on the performance of hydro kinetic turbines using a validated momentum source turbine model. Renewable Energy 35 (6):1152–58. doi:10.1016/j.renene.2009.11.023.
  • Ghani, M. P. A., O. Yaacob, and A. Abdul Aziz. 2010. The development of duct for a horizontal axis turbine using CFD. AIP Conference Proceedings 1225: 909–20. 10.1063/1.3464943.
  • Golecha, K., T. I. Eldho, and S. V. Prabhu. 2011. Influence of the deflector plate on the performance of modified Savonius water turbine. Applied Energy 88 (9):3207–17. doi:10.1016/j.apenergy.2011.03.025.
  • Güney, M. S., and K. Kaygusuz. 2010. Hydrokinetic energy conversion systems: A technology status review. Renewable and Sustainable Energy Reviews 14 (9):2996–3004. doi:10.1016/j.rser.2010.06.016.
  • Guo, F., B. Song, Z. Mao, and W. Tian. 2020. Experimental and numerical validation of the influence on Savonius turbine caused by rear deflector. Energy 196. doi:10.1016/j.energy.2020.117132.
  • Ibrahim, W. I., M. R. Mohamed, R. M. T. R. Ismail, P. K. Leung, W. W. Xing, and A. A. Shah. 2021. Hydrokinetic energy harnessing technologies: A review. Energy Reports 7:2021–42. doi:10.1016/j.egyr.2021.04.003.
  • Kailash, G., T. I. Eldho, and S. V. Prabhu. 2012. Performance study of modified Savonius water turbine with two deflector plates. International Journal of Rotating Machinery 2012. doi:10.1155/2012/679247.
  • Khalid, W., S. Sherbaz, A. Maqsood, and Z. Hussain. 2020. Design and optimization of a diffuser for a horizontal axis hydrokinetic turbine using Computational fluid dynamics based surrogate modelling. Mechanika 26 (2):161–70. doi:10.5755/j01.mech.26.2.23511.
  • Khan, Z. U., Z. Ali, and E. Uddin. 2022. Performance enhancement of vertical axis hydrokinetic turbine using novel blade profile. Renewable Energy 188 (April):801–18. doi:10.1016/j.renene.2022.02.050.
  • Khan, M. J., G. Bhuyan, M. T. Iqbal, and J. E. Quaicoe. 2009. Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review. Applied Energy 86 (10):1823–35. Elsevier Ltd. doi:https://doi.org/10.1016/j.apenergy.2009.02.017.
  • Khan, M. J., M. T. Iqbal, and J. E. Quaicoe. 2008. River Current energy conversion systems: Progress, prospects and challenges. Renewable and Sustainable Energy Reviews 12 (8):2177–93. doi:10.1016/j.rser.2007.04.016.
  • Kirke, B. K. 2011. Tests on ducted and bare helical and straight blade Darrieus hydrokinetic turbines. Renewable Energy 36 (11):3013–22. doi:10.1016/j.renene.2011.03.036.
  • Kumar Anuj, R. P., G. S. Saini, G. Dwivedi, and G. Dwivedi. 2020. Effect of number of stages on the performance characteristics of modified Savonius hydrokinetic turbine. Ocean Engineering 217:108090. doi:10.1016/j.oceaneng.2020.108090.
  • Kumar, A., and R. P. Saini. 2016. Performance parameters of Savonius type hydrokinetic turbine – a review. Renewable and Sustainable Energy Reviews 64:289–310. Elsevier Ltd. doi:10.1016/j.rser.2016.06.005.
  • Kumar, A., and R. P. Saini. 2017. Performance analysis of a Savonius hydrokinetic turbine having twisted blades. Renewable Energy 108:502–22. doi:10.1016/j.renene.2017.03.006.
  • Kumar, D., and S. Sarkar. 2016. Numerical investigation of hydraulic load and stress induced in Savonius hydrokinetic turbine with the effects of augmentation techniques through fluid-structure interaction analysis. Energy 116:609–18. doi:10.1016/j.energy.2016.10.012.
  • Laurens, J. M., M. Ait-Mohammed, and M. Tarfaoui. 2016. Design of bare and ducted axial marine current turbines. Renewable Energy 89:181–87. doi:10.1016/j.renene.2015.11.075.
  • Laws, N. D., and B. P. Epps. 2016. Hydrokinetic energy conversion: technology, research, and outlook. Renewable and Sustainable Energy Reviews 57:1245–59. doi:10.1016/j.rser.2015.12.189.
  • Liu, Z., Z. Wang, H. Shi, Qu, HL. 2019. Numerical study of a guide-vane-augmented vertical darrieus tidal-current-turbine. Journal of Hydrodynamics 31(3):522–30. doi:10.1007/s42241-018-0117-3.
  • Malipeddi, A. R., and D. Chatterjee. 2012. Influence of duct geometry on the performance of Darrieus hydroturbine. Renewable Energy 43:292–300. doi:10.1016/j.renene.2011.12.008.
  • Mohamed, E.-S., S. S. Ahmed, A. H. A. Elbatran, and A. Tawfiq. 2022. Numerical simulation of flow in hydrokinetic turbine channel to improve its efficiency by using first and second-law efficiency analysis. Ocean Engineering 244:110400. doi:10.1016/j.oceaneng.2021.110400.
  • Mosbahi, M., A. Ayadi, Y. Chouaibi, Z. Driss, and T. Tucciarelli. 2019. Performance study of a helical Savonius hydrokinetic turbine with a New deflector system design. Energy Conversion and Management 194 (February):55–74. doi:10.1016/j.enconman.2019.04.080.
  • Mosbahi, M., S. Elgasri, M. Lajnef, B. Mosbahi, and Z. Driss. 2021. Performance enhancement of a twisted Savonius hydrokinetic turbine with an upstream deflector. International Journal of Green Energy 18 (1):51–65. doi:10.1080/15435075.2020.1825444.
  • Nag, A. K., and S. Sarkar. 2020. Experimental and numerical study on the performance and flow pattern of different Savonius hydrokinetic turbines with varying duct angle. Journal of Ocean Engineering and Marine Energy 6 (1):31–53. doi:10.1007/s40722-019-00155-6.
  • Patel, V., T. I. Eldho, and S. V. Prabhu. 2019. Performance enhancement of a Darrieus hydrokinetic turbine with the blocking of a specific flow region for optimum use of hydropower. Renewable Energy 135:1144–56. doi:10.1016/j.renene.2018.12.074.
  • Patel, V. K., and R. S. Patel. 2022. Optimization of an angle between the deflector plates and its orientation to enhance the energy efficiency of Savonius hydrokinetic turbine for dual rotor configuration. International Journal of Green Energy 19 (5):476–89. doi:10.1080/15435075.2021.1947821.
  • Payambarpour, S., A. Abdolkarim, F. Najafi, and F. Magagnato. 2020. Investigation of deflector geometry and turbine aspect ratio effect on 3D modified In-Pipe Hydro Savonius turbine: parametric study. Renewable Energy 148:44–59. doi:10.1016/j.renene.2019.12.002.
  • Picanço, H. P., A. Kleber Ferreira de Lima, D. A. Tavares Dias Do Rio Vaz, E. F. Lins, and J. R. Pinheiro Vaz. 2022. Cavitation inception on hydrokinetic turbine blades shrouded by diffuser. Sustainability (Switzerland) 14 (12). doi: 10.3390/su14127067.
  • Rezek, T. J., R. G. R. Camacho, N. Manzanares Filho, and E. J. Limacher. 2021. Design of a hydrokinetic turbine diffuser based on optimization and Computational fluid dynamics. Applied Ocean Research 107 (February). doi: 10.1016/j.apor.2020.102484.
  • Salleh, M. B., N. M. Kamaruddin, and Z. Mohamed-Kassim. 2020. The effects of deflector longitudinal position and height on the power performance of a conventional Savonius turbine. Energy Conversion and Management 226 (August):113584. doi:10.1016/j.enconman.2020.113584.
  • Salleh, M. B., N. M. Kamaruddin, Z. Mohamed-Kassim, and E. Abu Bakar. 2021. Experimental investigation on the characterization of self-starting capability of a 3-bladed Savonius hydrokinetic turbine using deflector plates. Ocean Engineering 228 (November 2020):108950. doi:10.1016/j.oceaneng.2021.108950.
  • Salleh, B., N. M. K. Mohd, P. How Tion, and Z. Mohamed-Kassim. 2021. Comparison of the power performance of a conventional Savonius turbine with various deflector configurations in wind and water. Energy Conversion and Management 247:114726. doi:10.1016/j.enconman.2021.114726.
  • Scherillo, F., U. Maisto, G. Troise, D. P. Coiro, and S. Miranda. 2011. Numerical and experimental analysis of a shrouded hydroturbine. 2011 International Conference on Clean Electrical Power (ICCEP), Ischia, Italy, 216–22. doi: 10.1109/ICCEP.2011.6036277.
  • Shahsavarifard, M., E. L. Bibeau, and A. H. Birjandi. 2013. Performance gain of a horizontal axis hydrokinetic turbine using shroud, San Diego, San Diego, CA, USA: OCEANS, 1–5, doi:10.23919/OCEANS.2013.6740968
  • Shahsavarifard, M., E. Louis Bibeau, and V. Chatoorgoon. 2015. Effect of shroud on the performance of horizontal axis hydrokinetic turbines. Ocean Engineering 96:215–25. doi:10.1016/j.oceaneng.2014.12.006.
  • Shives, M., and C. Crawford. 2012. Developing an empirical model for ducted tidal turbine performance using numerical simulation results. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 226 (1):112–25. doi:10.1177/0957650911417958.
  • Silva, P. A. S. F., D. A. T. D. Rio Vaz, V. Britto, T. F. de Oliveira, J. R. P. Vaz, and A. C. P. Brasil Junior. 2018. A New approach for the design of diffuser-augmented hydro turbines using the blade element momentum. Energy Conversion and Management 165 (December 2017):801–14. doi:10.1016/j.enconman.2018.03.093.
  • Song, K., W. Quan Wang, and Y. Yan. 2019. Numerical and experimental analysis of a diffuser-augmented micro-hydro turbine. Ocean Engineering 171 (January):590–602. doi:10.1016/j.oceaneng.2018.12.028.
  • Tampier, G., C. Troncoso, and F. Zilic. 2017. Numerical analysis of a diffuser-augmented hydrokinetic turbine. Ocean Engineering 145 (May):138–47. doi:10.1016/j.oceaneng.2017.09.004.
  • Thakur, N., A. Biswas, Y. Kumar, and M. Basumatary. 2019. CFD analysis of performance improvement of the Savonius water turbine by using an impinging jet duct design. Chinese Journal of Chemical Engineering 27 (4):794–801. doi:10.1016/j.cjche.2018.11.014.
  • Thiyagaraj, J., I. Rahamathullah, R. Bharathiraja, G. Anbuchezhiyan, and A. Ponshanmugakumar. 2020. “Influence of various augmentation devices on the performance characteristics of modified four bladed fixed flip type Savonius Hydrokinetic Turbine.” Materials Today: Proceedings 46: 3665–69. 10.1016/j.matpr.2021.01.822.
  • Tunio, I. A., M. Ali Shah, T. Hussain, K. Harijan, N. Hussain Mirjat, and A. Hameed Memon. 2020. Investigation of duct augmented system effect on the overall performance of straight blade Darrieus hydrokinetic turbine. Renewable Energy 153:143–54. doi:10.1016/j.renene.2020.02.012.
  • Vennell, R. 2013. Exceeding the Betz limit with tidal turbines. Renewable Energy 55 (July):277–85. doi:10.1016/j.renene.2012.12.016.
  • Wang, W. Q., K. Song, and Y. Yan. 2019. Influence of interaction between the diffuser and rotor on energy harvesting performance of a micro-diffuser-augmented hydrokinetic turbine. Ocean Engineering 189(October): doi:10.1016/j.oceaneng.2019.106293.
  • Yazik, M., M. Hasfanizam, C. Wei Shyang, M. Hafifi Hafiz Ishak, and F. Ismail. 2023 April. An overview of blade materials and technologies for hydrokinetic turbine application. International Journal of Green Energy 1–24. doi:10.1080/15435075.2023.2199823.
  • Yuce, M. I., and A. Muratoglu. 2015. Hydrokinetic energy conversion systems: A technology status review. Renewable and Sustainable Energy Reviews 43:72–82. Elsevier Ltd. doi:10.1016/j.rser.2014.10.037.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.