135
Views
1
CrossRef citations to date
0
Altmetric
Research Article

A comparative performance analysis of electrical equivalent circuit models with the hysteresis effect of lithium iron phosphate batteries

&
Pages 1476-1499 | Received 16 Jun 2023, Accepted 07 Sep 2023, Published online: 20 Sep 2023

References

  • Amir, S., M. Gulzar, M. O. Tarar, I. H. Naqvi, N. A. Zaffar, and M. G. Pecht. 2022. Dynamic equivalent circuit model to estimate state-of-health of lithium-ion batteries. Institute of Electrical and Electronics Engineers Access 10:18279–88. doi:10.1109/ACCESS.2022.3148528.
  • Baccouche, I., S. Jemmali, B. Manai, N. Omar, and N. Amara. 2017. Improved OCV model of a li-ion NMC battery for online SOC estimation using the extended kalman filter. Energies 10 (6):764. doi:10.3390/en10060764.
  • Barai, A., W. D. Widanage, J. Marco, A. McGordon, and P. Jennings. 2015. A study of the open circuit voltage characterization technique and hysteresis assessment of lithium-ion cells. Journal of Power Sources 295:99–107. doi:10.1016/j.jpowsour.2015.06.140.
  • Barrios, F. A., J. Di Donato, C. Vidal, N. Chemmanoor, R. Ahmed, A. Emadi, and S. Habibi 2022. Comparing traditional and machine learning models for battery SOC calculation. 2022 IEEE Transp Electrification Conf Expo ITEC [Internet]. Anaheim, CA, USA: IEEE; [ accessed Aug 25 2022]; 125–30. 10.1109/ITEC53557.2022.9813753
  • Braga, R., A. Mevawalla, S. Gudiyella, S. Panchal, M. Giuliano, G. Nicol, and Y. Zheng 2023. Transient electrochemical modeling and performance investigation under different driving conditions for 144Ah li-ion cell with two jelly rolls [Internet]. Warrendale, PA: SAE International; [ accessed Aug 4 2023]. 10.4271/2023-01-0513
  • Chen, Y., Y. Kang, Y. Zhao, L. Wang, J. Liu, Y. Li, Z. Liang, X. He, X. Li, N. Tavajohi, et al. 2021a. A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards. Journal of Energy Chemistry 59:83–99. doi:10.1016/j.jechem.2020.10.017.
  • Chen, Y., Y. Kang, Y. Zhao, L. Wang, J. Liu, Y. Li, Z. Liang, X. He, X. Li, N. Tavajohi, et al. 2021b. A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards. Journal of Energy Chemistry 59:83–99. doi:10.1016/j.jechem.2020.10.017.
  • Ding, X., D. Zhang, J. Cheng, B. Wang, and P. C. K. Luk. 2019. An improved Thevenin model of lithium-ion battery with high accuracy for electric vehicles. Applied Energy 254:113615. doi:10.1016/j.apenergy.2019.113615.
  • Fan, G., X. Li, and M. Canova. 2018. A reduced-order electrochemical model of li-ion batteries for control and estimation applications. IEEE Transactions on Vehicular Technology 67 (1):76–91. doi:10.1109/TVT.2017.2738780.
  • Ghosh, A. 2021. Electric vehicles—solution toward zero emission from the transport sector. World Electric Vehicle Journal 12 (4):262. doi:10.3390/wevj12040262.
  • He, H., R. Xiong, and J. Fan. 2011. Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach. Energies 4 (4):582–98. doi:10.3390/en4040582.
  • He, H., X. Zhang, R. Xiong, Y. Xu, and H. Guo. 2012. Online model-based estimation of state-of-charge and open-circuit voltage of lithium-ion batteries in electric vehicles. Energy 39 (1):310–18. doi:10.1016/j.energy.2012.01.009.
  • Huang, Z., F. Yang, F. Xu, X. Song, and K.-L. Tsui. 2019. Convolutional gated recurrent unit–recurrent neural network for state-of-charge estimation of lithium-ion batteries. Institute of Electrical and Electronics Engineers Access 7:93139–49. doi:10.1109/ACCESS.2019.2928037.
  • Hu, X., S. Li, and H. Peng. 2012. A comparative study of equivalent circuit models for li-ion batteries. Journal of Power Sources 198:359–67. doi:10.1016/j.jpowsour.2011.10.013.
  • Li, A. G., K. Mayilvahanan, A. C. West, and M. Preindl. 2021. Discrete-time modeling of li-ion batteries with electrochemical overpotentials including diffusion. Journal of Power Sources 500:229991. doi:10.1016/j.jpowsour.2021.229991.
  • Ling, L., and Y. Wei. 2021. State-of-charge and state-of-health estimation for lithium-ion batteries based on dual fractional-order extended Kalman filter and online parameter identification. Institute of Electrical and Electronics Engineers Access 9:47588–602. doi:10.1109/ACCESS.2021.3068813.
  • Lin, X., Y. Tang, J. Ren, and Y. Wei. 2021. State of charge estimation with the adaptive unscented Kalman filter based on an accurate equivalent circuit model. Journal of Energy Storage 41:102840. doi:10.1016/j.est.2021.102840.
  • Li, K., and K. J. Tseng 2016. An electrical model capable of estimating the state of energy for lithium-ion batteries used in energy storage systems. 2016 IEEE 2nd Annu South Power Electron Conf SPEC [Internet]. Auckland, New Zealand: IEEE;[ accessed Mar 4 2023]; 1–8. 10.1109/SPEC.2016.7846167
  • Masias, A., J. Marcicki, and W. A. Paxton. 2021. Opportunities and challenges of lithium ion batteries in automotive applications. ACS Energy Letters 6 (2):621–30. doi:10.1021/acsenergylett.0c02584.
  • Meng, J., G. Luo, M. Ricco, M. Swierczynski, D.-I. Stroe, and R. Teodorescu. 2018. Overview of lithium-ion battery modeling methods for state-of-charge estimation in Electrical vehicles. Applied Science 8 (5):659. doi:10.3390/app8050659.
  • Miao, Y., P. Hynan, A. von Jouanne, and A. Yokochi. 2019. Current li-ion battery technologies in electric vehicles and opportunities for advancements. Energies 12 (6):1074. doi:10.3390/en12061074.
  • Miniguano, H., A. Barrado, A. Lazaro, P. Zumel, and C. Fernandez. 2020. General parameter identification procedure and Comparative study of li-ion battery models. IEEE Transactions on Vehicular Technology 69 (1):235–45. doi:10.1109/TVT.2019.2952970.
  • Miwa, T., H. Sato, and T. Morikawa. 2017. Range and battery depletion concerns with electric vehicles. Journal of Advanced Transportation 2017:1–12. doi:10.1155/2017/7491234.
  • Mu, H., and R. Xiong 2018. Modeling, Evaluation, and state estimation for batteries. Model Dyn Control Electrified Veh [Internet]. [place unknown]: Elsevier; [ accessed Mar 20 2023]; 1–38. 10.1016/B978-0-12-812786-5.00001-X
  • Nejad, S., D. T. Gladwin, and D. A. Stone 2015. Enhanced state-of-charge estimation for lithium-ion iron phosphate cells with flat open-circuit voltage curves. IECON 2015 - 41st Annu Conf IEEE Ind Electron Soc [Internet]. Yokohama: IEEE; [ accessed Jan 4 2023]; 003187–92. 10.1109/IECON.2015.7392591
  • Rangarajan S, S., S. P. Sunddararaj, A. Sudhakar, C. K. Shiva, U. Subramaniam, E. R. Collins, and T. Senjyu. 2022. Lithium-ion batteries—the crux of electric vehicles with opportunities and challenges. Clean Technology 4 (4):908–30. doi:10.3390/cleantechnol4040056.
  • Rivera-Barrera, J., N. Muñoz-Galeano, and H. Sarmiento-Maldonado. 2017. SoC estimation for lithium-ion batteries: Review and future challenges. Electronics 6 (4):102. doi:10.3390/electronics6040102.
  • Roscher, M. A., O. Bohlen, and J. Vetter. 2011. OCV hysteresis in li-ion batteries including two-phase transition Materials. International Journal of Electrochemical Science 2011:1–6. doi:10.4061/2011/984320.
  • Samieian, M. A., A. Hales, and Y. Patel. 2022. A novel experimental technique for use in fast parameterisation of equivalent circuit models for lithium-ion batteries. Batteries 8 (9):125. doi:10.3390/batteries8090125.
  • Singirikonda, S., and Y. P. Obulesu. 2020. Battery modelling and state of charge estimation methods for Energy management in electric vehicle-A review. IOP Conference Series: Materials Science & Engineering 937 (1):012046. doi:10.1088/1757-899X/937/1/012046.
  • Taylor, J., A. Barai, T. R. Ashwin, Y. Guo, M. Amor-Segan, and J. Marco. 2019. An insight into the errors and uncertainty of the lithium-ion battery characterisation experiments. Journal of Energy Storage 24:100761. doi:10.1016/j.est.2019.100761.
  • Teixeira, A. C. R., and J. R. Sodré. 2018. Impacts of replacement of engine powered vehicles by electric vehicles on energy consumption and CO 2 emissions. Transportation Research Part Transport Environment 59:375–84. doi:10.1016/j.trd.2018.01.004.
  • Tomasov, M., M. Kajanova, P. Bracinik, and D. Motyka. 2019. Overview of battery models for sustainable Power and transport applications. Transportation Research Procedia 40:548–55. doi:10.1016/j.trpro.2019.07.079.
  • Tsai, I.-H., K.-H. Yu, A. Tseng, J.-Y. Yen, T.-T. Fu, and E. Huang. 2018. Battery cell modeling and online estimation of the state of charge of a lithium-ion battery. Journal of the Chinese Institute of Engineers 41 (5):412–18. doi:10.1080/02533839.2018.1490203.
  • Wang, S., Q. Chen, K. Wang, Z. Wang, and Y. Wang. 2019. Parameter identification of lithium Iron Phosphate battery model for battery electric vehicle. IOP Conference Series: Materials Science & Engineering 677 (3):032048. doi:10.1088/1757-899X/677/3/032048.
  • Wang, S., Y. Fan, S. Jin, P. Takyi-Aninakwa, and C. Fernandez. 2023. Improved anti-noise adaptive long short-term memory neural network modeling for the robust remaining useful life prediction of lithium-ion batteries. Reliability Engineering and System Safety 230:108920. doi:10.1016/j.ress.2022.108920.
  • Wang, Q., J. Wang, P. Zhao, J. Kang, F. Yan, and C. Du. 2017. Correlation between the model accuracy and model-based SOC estimation. Electrochimica Acta 228:146–59. doi:10.1016/j.electacta.2017.01.057.
  • Wei, Y. 2022. State-of-charge estimation for lithium-ion batteries based on dual extended Kalman filter. Journal of Physics Conference Series 2369 (1):012048. doi:10.1088/1742-6596/2369/1/012048.
  • Xi, Z., M. Dahmardeh, B. Xia, Y. Fu, and C. Mi. 2019. Learning of battery model bias for effective state of charge estimation of lithium-ion batteries. IEEE Transactions on Vehicular Technology 68 (9):8613–28. doi:10.1109/TVT.2019.2929197.
  • Xu, X., Y. Lin, F. Wang, S. Yang, and Z. Zhou. 2019. A hybrid observer for SOC estimation of lithium-ion battery based on a coupled electrochemical-thermal model. International Journal of Green Energy 16 (15):1527–38. doi:10.1080/15435075.2019.1671423.
  • Yilmaz, N. 2022. Comparative energy and environmental assessment of battery technologies and alternative fuels in sustainable aviation. International Journal of Green Energy 1–10. doi:10.1080/15435075.2022.2075226.
  • Yu, H., J. Li, Y. Ji, and M. Pecht. 2022. Life-cycle parameter identification method of an electrochemical model for lithium-ion battery pack. Journal of Energy Storage 47:103591. doi:10.1016/j.est.2021.103591.
  • Zhang, H., C. Deng, Y. Zong, Q. Zuo, H. Guo, S. Song, and L. Jiang. 2022. Effect of sample interval on the parameter identification results of RC equivalent circuit models of li-ion battery: An investigation based on HPPC test data. Batteries 9 (1):1. doi:10.3390/batteries9010001.
  • Zhang, C., Y. Guo, C. Wang, S. Li, O. Curnick, T. Amietszajew, and R. Bhagat. 2022. A new design of experiment method for model parametrisation of lithium ion battery. Journal of Energy Storage 50:104301. doi:10.1016/j.est.2022.104301.
  • Zhang, C., K. Li, J. Deng, and S. Song. 2017. Improved realtime state-of-charge estimation of LiFePO \boldsymbol 4 battery based on a novel thermoelectric model. IEEE Transactions on Industrial Electronics 64 (1):654–63. doi:10.1109/TIE.2016.2610398.
  • Zhang, L., H. Peng, Z. Ning, Z. Mu, and C. Sun. 2017a. Comparative research on RC equivalent circuit models for lithium-ion batteries of electric vehicles. Applied Sciences 7 (10):1002. doi:10.3390/app7101002.
  • Zhang, L., H. Peng, Z. Ning, Z. Mu, and C. Sun. 2017b. Comparative research on RC equivalent circuit models for lithium-ion batteries of electric vehicles. Applied Sciences 7 (10):1002. doi:10.3390/app7101002.
  • Zhang, Y., C.-Y. Wang, and X. Tang. 2011. Cycling degradation of an automotive LiFePO4 lithium-ion battery. Journal of Power Sources 196 (3):1513–20. doi:10.1016/j.jpowsour.2010.08.070.
  • Zhang, Q., D. Wang, B. Yang, H. Dong, C. Zhu, and Z. Hao. 2022. An electrochemical impedance model of lithium-ion battery for electric vehicle application. Journal of Energy Storage 50:104182. doi:10.1016/j.est.2022.104182.
  • Zhang, Y., T. Wik, J. Bergström, M. Pecht, and C. Zou. 2022. A machine learning-based framework for online prediction of battery ageing trajectory and lifetime using histogram data. Journal of Power Sources 526:231110. doi:10.1016/j.jpowsour.2022.231110.
  • Zhang, Y., R. Xiong, and H. He 2016. Evaluation of the model-based state-of-charge estimation methods for lithium-ion batteries. 2016 IEEE Transp Electrification Conf Expo ITEC [Internet]. Dearborn, MI, USA: IEEE; [ accessed Mar 21 2023]; 1–8. 10.1109/ITEC.2016.7520184
  • Zilberman, I., A. Rheinfeld, and A. Jossen. 2018. Uncertainties in entropy due to temperature path dependent voltage hysteresis in li-ion cells. Journal of Power Sources 395:179–84. doi:10.1016/j.jpowsour.2018.05.052.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.