169
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Fault diagnosis of lithium-ion batteries based on voltage dip behavior

, ORCID Icon, , , , & show all
Pages 1523-1535 | Received 03 Apr 2023, Accepted 12 Sep 2023, Published online: 24 Sep 2023

References

  • Chang, C., X. Zhou, J. Jiang, Y. Gao, Y. Jiang, and T. Wu. 2022. Electric vehicle battery pack micro-short circuit fault diagnosis based on charging voltage ranking evolution. Journal of Power Sources 542 (15. September):231733. doi:10.1016/j.jpowsour.2022.231733.
  • Chao, W., C. Zhu, and Y. Ge. 2017. A New fault diagnosis and prognosis Technology for high-Power lithium-ion battery. IEEE Transactions on Plasma Science 45 (7):1533–38. doi:10.1109/tps.2017.2706088.
  • Chao, W., C. Zhu, Y. Ge, and Y. Zhao. 2015. A review on fault mechanism and diagnosis approach for li-ion batteries. Journal Of Nanomaterials 2015:631263. doi:10.1155/2015/631263.
  • Feng, X., Y. Pan, X. He, L. Wang, and M. Ouyang. 2018. Detecting the internal short circuit in large-format lithium-ion battery using model-based fault-diagnosis algorithm. Journal of Energy Storage 18 (1. August):26–39. doi:10.1016/j.est.2018.04.020.
  • Hong, J., Z. Wang, W. Chen, and L. Wang. November, 2019. Multi‐fault synergistic diagnosis of battery systems based on the modified multi‐scale entropy. International Journal of Energy Research 43(14):8350–69. doi:10.1002/er.4831.
  • Hong, J., Z. Wang, C. Qu, Y. Zhou, T. Shan, J. Zhang, and Y. Hou. 2022. Investigation on overcharge-caused thermal runaway of lithium-ion batteries in real-world electric vehicles. Applied Energy 321 (September):119229. doi:10.1016/j.apenergy.2022.119229.
  • Hong, J., H. Zhang, and X. Xu. 2023. Thermal fault prognosis of lithium-ion batteries in real-world electric vehicles using self-attention mechanism networks. Applied Thermal Engineering 226 (25. Mai):120304. doi:10.1016/j.applthermaleng.2023.120304 .
  • Hu, X., H. Yuan, C. Zou, Z. Li, and L. Zhang. 2018. Co-estimation of state of charge and state of health for lithium-ion batteries based on fractional-order calculus. IEEE Transactions on Vehicular Technology. zugegriffen Mai 14, 2023 doi:10.1109/TVT.2018.2865664. http://www.researchgate.net/publication/327044875_Co-Estimation_of_State_of_Charge_and_State_of_Health_for_Lithium-Ion_Batteries_Based_on_Fractional-Order_Calculus.
  • Hu, X., K. Zhang, K. Liu, X. Lin, S. Dey, and S. Onori. September, 2020. Advanced fault diagnosis for lithium-ion battery systems: A review of fault mechanisms, fault features, and diagnosis procedures. IEEE Industrial Electronics Magazine 14(3):65–91. doi:10.1109/MIE.2020.2964814.
  • Jiang, J., T. Li, C. Chang, C. Yang, and L. Liao. 2022. Fault diagnosis method for lithium-ion batteries in electric vehicles based on isolated forest algorithm. Journal of Energy Storage 50 (1 June):104177. doi:10.1016/j.est.2022.104177.
  • Jiang, Z. Y., Z. G. Qu, J. F. Zhang, and Z. H. Rao. 2020. Rapid prediction method for thermal runaway propagation in battery pack based on lumped thermal resistance network and electric circuit analogy. Applied Energy 268 (15 June):115007. doi:10.1016/j.apenergy.2020.115007.
  • Lai, X., W. Yi, X. Kong, X. Han, L. Zhou, T. Sun, and Y. Zheng. 2020. Online detection of early stage internal short circuits in series-connected lithium-ion battery packs based on state-of-charge correlation. Journal of Energy Storage 30 (1):101514. doi:10.1016/j.est.2020.101514.
  • Liang, T., and H. Lu. 2020. A novel method based on multi-Island genetic algorithm Improved variational mode decomposition and multi-features for fault diagnosis of rolling bearing. Entropy 22 (Nr. 9):995. doi:10.3390/e22090995.
  • Liu, K., Y. Shang, Q. Ouyang, and W. D. Widanage. April 2021. A data-driven approach with uncertainty quantification for predicting future capacities and remaining useful life of lithium-ion battery. IEEE Transactions on Industrial Electronics 68 (Nr. 4):3170–80. doi:10.1109/TIE.2020.2973876.
  • Li, X., and Z. Wang. 2018. A novel fault diagnosis method for lithium-ion battery packs of electric vehicles. Measurement 116 (1):402–11. doi:10.1016/j.measurement.2017.11.034.
  • Li, D., Z. Zhang, P. Liu, and Z. Wang. August 1, 2019. DBSCAN-Based thermal runaway diagnosis of battery systems for electric vehicles. Energies 12 (Nr. 15):2977. doi:10.3390/en12152977.
  • Meng, J., M. Boukhnifer, C. Delpha, and D. Diallo. 2020. Incipient short-circuit fault diagnosis of lithium-ion batteries. Journal of Energy Storage 31:101658. doi:10.1016/j.est.2020.101658.
  • Muddappa, V. K. S., and S. Anwar. März, 2015. Electrochemical model based fault diagnosis of li-ion battery using fuzzy logic. In American society of mechanical engineers digital collection, Vol. 13. zugegriffen Dezember 12, 2022. doi:10.1115/IMECE2014-37134. https://asmedigitalcollection.asme.org/IMECE/proceedings-abstract/IMECE2014/46483/257358.
  • Ojo, O., H. Lang, Y. Kim, X. Hu, B. Mu, and X. Lin. Mai, 2021. A neural network based method for thermal fault detection in lithium-ion batteries. IEEE Transactions on Industrial Electronics 68(5):4068–78. doi:10.1109/TIE.2020.2984980.
  • Samanta, A., S. Chowdhuri, and S. S. Williamson. Januar, 2021. Machine learning-based data-driven fault detection/diagnosis of lithium-ion battery: A critical review. Electronics 10(11):1309. doi:10.3390/electronics10111309.
  • Shang, Y., G. Lu, Y. Kang, Z. Zhou, B. Duan, and C. Zhang. 2020. A multi-fault diagnosis method based on modified sample entropy for lithium-ion battery strings. Journal of Power Sources 446 (Januar):227275. doi:10.1016/j.jpowsour.2019.227275.
  • Sun, Z., Z. Wang, P. Liu, Z. Qin, Y. Chen, Y. Han, P. Wang, and P. Bauer. Oktober 2022. An online data-driven fault diagnosis and thermal runaway early warning for electric vehicle batteries. IEEE Transactions on Power Electronics 37 (Nr. 10):12636–46. doi:10.1109/TPEL.2022.3173038.
  • Tian, J., R. Xiong, W. Shen, and F. Sun. November 1, 2020. Fractional order battery modelling methodologies for electric vehicle applications: Recent advances and perspectives. Science China Technological Sciences 63 (Nr. 11):2211–30. doi:10.1007/s11431-020-1654-0.
  • Tran, M.-K., A. DaCosta, A. Mevawalla, S. Panchal, and M. Fowler. September 2021. Comparative study of equivalent circuit models performance in four common lithium-ion batteries: LFP, NMC, LMO, NCA. Batteries 7 (Nr. 3):51. doi:10.3390/batteries7030051.
  • Tran, M.-K., A. Mevawalla, A. Aziz, S. Panchal, Y. Xie, and M. Fowler. Juni 2022. A review of lithium-ion battery thermal runaway modeling and diagnosis approaches. Processes 10 (Nr. 6):1192. doi:10.3390/pr10061192.
  • Wang, Q., Z. Wang, L. Zhang, P. Liu, and L. Zhou. August 2023. A battery capacity estimation framework combining hybrid deep neural network and regional capacity calculation based on real-world operating data. IEEE Transactions on Industrial Electronics 70 (Nr. 8):8499–508. doi:10.1109/TIE.2022.3229350.
  • Xia, B., Y. Shang, T. Nguyen, and C. Mi. 2017. A correlation based fault detection method for short circuits in battery packs. Journal of Power Sources 337 (1):1–10. doi:10.1016/j.jpowsour.2016.11.007.
  • Xiong, J., H. Banvait, L. Li, Y. Chen, J. Xie, Y. Liu, W. Meng, and J. Chen. März, 2012. Failure detection for over-discharged li-ion batteries. 2012 IEEE International Electric Vehicle Conference, 1–5. doi:10.1109/IEVC.2012.6183238.
  • Xiong, R., W. Sun, Q. Yu, and F. Sun. 2020. Research progress, challenges and prospects of fault diagnosis on battery system of electric vehicles. Applied Energy 279 (1):115855. doi:10.1016/j.apenergy.2020.115855.
  • Yao, L., Y. Xiao, X. Gong, J. Hou, and X. Chen. 2020. A novel intelligent method for fault diagnosis of electric vehicle battery system based on wavelet neural network. Journal of Power Sources 453 (31. März):227870. doi:10.1016/j.jpowsour.2020.227870.
  • Yin, H., S. Ma, H. Li, G. Wen, S. Santhanagopalan, and C. Zhang. 2021. Modeling strategy for progressive failure prediction in lithium-ion batteries under mechanical abuse. eTransportation 7 (1. Februar):100098. doi:10.1016/j.etran.2020.100098.
  • Zhang, L., L. Huang, Z. Zhang, Z. Wang, and D. D. Dorrell. 2022. Degradation characteristics investigation for lithium-ion cells with NCA cathode during overcharging. Applied Energy 327 (1. Dezember):120026. doi:10.1016/j.apenergy.2022.120026.
  • Zhang, G., X. Wei, X. Tang, J. Zhu, S. Chen, and H. Dai. 2021. Internal short circuit mechanisms, experimental approaches and detection methods of lithium-ion batteries for electric vehicles: A review. Renewable and Sustainable Energy Reviews 141 (1. Mai):110790. doi:10.1016/j.rser.2021.110790.
  • Zhao, N., Z. Mao, D. Wei, H. Zhao, J. Zhang, and Z. Jiang. 2020. Fault diagnosis of diesel engine valve clearance based on variational mode decomposition and random forest. Multidisciplinary Digital Publishing Institute 10 (Nr. 3):1124. zugegriffen März 30, 2023. doi:10.3390/APP10031124. http://www.xueshufan.com/publication/3125606754.
  • Zheng, Y., W. Gao, M. Ouyang, L. Lu, L. Zhou, and X. Han. 2018. State-of-charge inconsistency estimation of lithium-ion battery pack using mean-difference model and extended Kalman filter. Journal of Power Sources 383 (15. April):50–58. doi:10.1016/j.jpowsour.2018.02.058.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.