164
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Ideal thermochromic smart window in a south-facing office room of China considering daylighting and energy performance

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1729-1742 | Received 03 May 2023, Accepted 25 Sep 2023, Published online: 04 Oct 2023

References

  • Aburas, M., H. Ebendorff-Heidepriem, L. Lei, M. Li, J. Zhao, T. Williamson, Y. Wu, and V. Soebarto. 2021. Smart windows – transmittance tuned thermochromic coatings for dynamic control of building performance. Energy and Buildings 235:110717. doi:10.1016/j.enbuild.2021.110717.
  • Aburas, M., V. Soebarto, T. Williamson, R. Liang, H. Ebendorff-Heidepriem, and Y. Wu. 2019. Thermochromic smart window technologies for building application: A review. Applied Energy 255:113522. doi:10.1016/j.apenergy.2019.113522.
  • Allen, K., K. Connelly, P. Rutherford, and Y. Wu. 2017. Smart windows—dynamic control of building energy performance. Energy and Buildings 139:535–46. doi:10.1016/j.enbuild.2016.12.093.
  • Brembilla, E., C. J. Hopfe, and J. Mardaljevic. 2018. Influence of input reflectance values on climate-based daylight metrics using sensitivity analysis. Journal of Building Performance Simulation 11 (3):333–49. doi:10.1080/19401493.2017.1364786.
  • Brembilla, E., and J. Mardaljevic. 2019. Climate-based daylight modelling for compliance verification: Benchmarking multiple state-of-the-art methods. Building and Environment 158:151–64. doi:10.1016/j.buildenv.2019.04.051.
  • Carlucci, S., F. Causone, F. De Rosa, and L. Pagliano. 2015. A review of indices for assessing visual comfort with a view to their use in optimization processes to support building integrated design. Renewable & Sustainable Energy Reviews 47:1016–33. doi:10.1016/j.rser.2015.03.062.
  • Chen, Q. Y., Y. Huang, H. J. Wu, X. Liang, and X. Ma. 2022. A review and prospect on research progress of adjustable transparent envelope. Building Simulation. doi:10.1007/s12273-022-0944-6.
  • Costanzo, V., G. Evola, and L. Marletta. 2016. Thermal and visual performance of real and theoretical thermochromic glazing solutions for office buildings. Solar Energy Materials and Solar Cells 149:110–20. doi:10.1016/j.solmat.2016.01.008.
  • Crawley, D. B., L. K. Lawrie, F. C. Winkelmann, W. F. Buhl, Y. J. Huang, C. O. Pedersen, R. K. Strand, R. J. Liesen, D. E. Fisher, M. J. Witte et al. 2001. EnergyPlus: Creating a new-generation building energy simulation program. Energy and Buildings. 33(4):319–31. doi:10.1016/S0378-7788(00)00114-6.
  • Deb, K., and H. Jain. 2014. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints. IEEE Transactions on Evolutionary Computation 18 (4):577–601. doi:10.1109/TEVC.2013.2281535.
  • Emmerich, M. T. M., and A. H. Deutz. 2018. A tutorial on multiobjective optimization: Fundamentals and evolutionary methods. Natural Computing 17 (3):585–609. doi:10.1007/s11047-018-9685-y.
  • Ghosh, A., and B. Norton. 2018. Advances in switchable and highly insulating autonomous (self-powered) glazing systems for adaptive low energy buildings. Renewable Energy 126:1003–31. doi:10.1016/j.renene.2018.04.038.
  • Giovannini, L., F. Favoino, A. Pellegrino, V. R. M. Lo Verso, V. Serra, and M. Zinzi. 2019. Thermochromic glazing performance: From component experimental characterisation to whole building performance evaluation. Applied Energy 251:251. doi:10.1016/j.apenergy.2019.113335.
  • Hoffmann, S., E. S. Lee, and C. Clavero. 2014. Examination of the technical potential of near-infrared switching thermochromic windows for commercial building applications. Solar Energy Materials and Solar Cells 123:65–80. doi:10.1016/j.solmat.2013.12.017.
  • Hong, X. Q., F. Shi, S. S. Wang, X. Yang, and Y. Yang. 2021. Multi-objective optimization of thermochromic glazing based on daylight and energy performance evaluation. Building Simulation 14 (6):1685–95. doi:10.1007/s12273-021-0778-7.
  • Hosseini, S. M., M. Mohammadi, A. Rosemann, T. Schröder, and J. Lichtenberg. 2019. A morphological approach for kinetic façade design process to improve visual and thermal comfort: Review. Building and Environment 153:186–204. doi:10.1016/j.buildenv.2019.02.040.
  • Jin, Q., X. Y. Long, and R. Q. Liang. 2022. Numerical analysis on the thermal performance of PCM-integrated thermochromic glazing systems. Energy and Buildings 257:257. doi:10.1016/j.enbuild.2021.111734.
  • Liang, R. Q., Y. Y. Sun, M. Aburas, R. Wilson, and Y. Wu. 2018. Evaluation of the thermal and optical performance of thermochromic windows for office buildings in China. Energy and Buildings 176:216–31. doi:10.1016/j.enbuild.2018.07.009.
  • Liang, R. Q., Y. Y. Sun, M. Aburas, R. Wilson, and Y. Wu. 2019. An exploration of the combined effects of NIR and VIS spectrally selective thermochromic materials on building performance. Energy and Buildings 201:149–62. doi:10.1016/j.enbuild.2019.05.061.
  • Long, L. S., and H. Ye. 2017. Dual-intelligent windows regulating both solar and long-wave radiations dynamically. Solar Energy Materials and Solar Cells 169:145–50. doi:10.1016/j.solmat.2017.05.022.
  • Long, L. S., H. Ye, H. T. Zhang, and Y. F. Gao. 2015. Performance demonstration and simulation of thermochromic double glazing in building applications. Solar Energy 120:55–64. doi:10.1016/j.solener.2015.07.025.
  • Manni, M., and A. Nicolini. 2022. Multi-objective optimization models to design a responsive built Environment: A synthetic review. Energies 15 (2):486. doi:10.3390/en15020486.
  • Marzouk, M., M. ElSharkawy, and A. Mahmoud. 2022. Analysing user daylight preferences in heritage buildings using virtual reality. Building Simulation 15 (9):1561–76. doi:10.1007/s12273-021-0873-9.
  • Mohurd. 2016. Thermal design code for civil building. [In Chinese.] GB 50176-2016. China Building Industry Publishing House: Beijing.
  • MOhurd. 2018. Standard for green performance calculation of civil building. [In Chinese.] JGJ/T 449. China Building Industry Publishing House: Beijing.
  • Mohurd. 2021. General code for energy efficiency and renewable energy application in buildings. [In Chinese.] GB 55015-2021. China Building Industry Publishing House: Beijing.
  • Nabil, A., and J. Mardaljevic. 2006. Useful daylight illuminances: A replacement for daylight factors. Energy and Buildings 38 (7):905–13. doi:10.1016/j.enbuild.2006.03.013.
  • Nie, Y., W. He, X. Liu, Z. Hu, H. Yu, and H. Liu. 2022. Smart luminescent solar concentrator as a BICPV window. Building Simulation 15 (10):1789–98. doi:10.1007/s12273-022-0896-x.
  • Ozarisoy, B., and H. Altan. 2022a. Bridging the energy performance gap of social housing stock in south-eastern Mediterranean Europe: Climate change and mitigation. Energy and Buildings 258:111687. doi:10.1016/j.enbuild.2021.111687.
  • Ozarisoy, B., and H. Altan. 2022b. Significance of occupancy patterns and habitual household adaptive behaviour on home-energy performance of post-war social-housing estate in the south-eastern Mediterranean climate: Energy policy design. Energy 244:122904. doi:10.1016/j.energy.2021.122904.
  • Razmi, A., M. Rahbar, and M. Bemanian. 2022. PCA-ANN integrated NSGA-III framework for dormitory building design optimization: Energy efficiency, daylight, and thermal comfort. Applied Energy 305:117828. doi:10.1016/j.apenergy.2021.117828.
  • Saeli, M., C. Piccirillo, I. P. Parkin, R. Binions, and I. Ridley. 2010. Energy modelling studies of thermochromic glazing. Energy and Buildings 42 (10):1666–73. doi:10.1016/j.enbuild.2010.04.010.
  • Salamati, M., P. Mathur, G. Kamyabjou, and K. Taghizade. 2020. Daylight performance analysis of TiO2@W-VO2 thermochromic smart glazing in office buildings. Building and Environment 186:107351. doi:10.1016/j.buildenv.2020.107351.
  • Tao, Y., X. Fang, H. H. Zhang, G. Zhang, J. Tu, and L. Shi. 2022. Impacts of thermo-optical properties on the seasonal operation of thermochromic smart window. Energy Conversion and Management 252:115058. doi:10.1016/j.enconman.2021.115058.
  • van Eck NJ, L. Waltman, and N. J. van Eck. 2010. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84 (2):523–38. doi:10.1007/s11192-009-0146-3.
  • Vidhyashankar, R., R. Vinze, S. Nagarathinam, and V. K. Natrajan. 2022. Modelling spatial variations in thermal comfort in indoor open-plan spaces using a whole-building simulation tool. Journal of Building Engineering 46:103727. doi:10.1016/j.jobe.2021.103727.
  • Xu, Y., G. Chang, R. Fan, and T. Cai. 2023. Effects of various operating conditions and optimal ionomer-gradient distribution on temperature-driven water transport in cathode catalyst layer of PEMFC. Chemical Engineering Journal 451:451. doi:10.1016/j.cej.2022.138924.
  • Xue, Q., Z. Wang, and Q. Chen. 2021. Multi-objective optimization of building design for life cycle cost and CO2 emissions: A case study of a low-energy residential building in a severe cold climate. Building Simulation 15 (1):83–98. doi:10.1007/s12273-021-0796-5.
  • Xu, X. J., X. Wu, C. Zhao, J. X. Wang, and X. T. Ge. 2012. Simulation and improvement of energy consumption on intelligent glasses in typical cities of China. Science China-Technological Sciences 55 (7):1999–2005. doi:10.1007/s11431-012-4854-1.
  • Zhang, Y., T. Tennakoon, Y. H. Chan, K. C. Chan, S. C. Fu, C. Y. Tso, K. M. Yu, B. L. Huang, S. H. Yao, H. H. Qiu, et al. 2022. Energy consumption modelling of a passive hybrid system for office buildings in different climates. Energy 239:239. doi:10.1016/j.energy.2021.121914.
  • Zhao, W., W. He, Z. Hu, X. Zheng, S. Zhang, G. Xu, H. Chen, and Y. Yuan. 2022. Daylight and thermal performance of a switchable ethylene tetra-fluoro-ethylene cushion with dynamic control in different climates. Building Simulation 15 (1):29–40. doi:10.1007/s12273-021-0794-7.
  • Zheng, S. J., Y. Xu, Q. H. Shen, and H. Yang. 2015. Preparation of thermochromic coatings and their energy saving analysis. Solar Energy 112:263–71. doi:10.1016/j.solener.2014.09.049.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.