102
Views
1
CrossRef citations to date
0
Altmetric
Research Article

System modeling and temperature control for a fuel cell system based on local model networks

ORCID Icon, , &
Pages 1776-1792 | Received 10 May 2023, Accepted 29 Sep 2023, Published online: 09 Oct 2023

References

  • Akroot, A., O. Ekici, and M. Koksal. 2019. Process modeling of an automotive pem fuel cell system. International Journal of Green Energy 16 (10):778–88. doi:10.1080/15435075.2019.1641105.
  • Amirfazli, A., S. Asghari, and M. Koosha. 2014. Mathematical modeling and simulation of thermal management in polymer electrolyte membrane fuel cell stacks. Journal of Power Sources 268:533–45. doi:10.1016/j.jpowsour.2014.06.073.
  • Bagherabadi, K. M., S. Skjong, and E. Pedersen. 2022. Dynamic modelling of PEM fuel cell system for simulation and sizing of marine power systems. International Journal of Hydrogen Energy 47 (40):17699–712. doi:10.1016/j.ijhydene.2022.03.2470360-3199.
  • Belz, J., T. Munker, T. O. Heinz, G. Kampmann, and O. Nelles. 2017. Automatic modeling with local model networks for benchmark processes. 20th World Congress of the International-Federation-of-Automatic-Control (IFAC), Toulouse, FRANCE, Jul 09-14.
  • Chen, F. X., J. R. Jiao, Z. J. Hou, W. Cheng, J. Cai, Z. G. Xia, and J. Chen. 2020. Robust polymer electrolyte membrane fuel cell temperature tracking control based on cascade internal model control. Journal of Power Sources 479:229008. doi:10.1016/j.jpowsour.2020.229008.
  • Chen, Q. H., L. J. Gao, R. A. Dougal, and S. H. Quan. 2009. Multiple model predictive control for a hybrid proton exchange membrane fuel cell system. Journal of Power Sources 191 (2):473–82. doi:10.1016/j.jpowsour.2009.02.034.
  • Chinannai, M. F., J. Lee, and H. Ju. 2021. Study of the characteristics of temperature rise and coolant flow rate control during malfunction of PEM fuel cells. International Journal of Hydrogen Energy 46 (19):11160–75. doi:10.1016/j.ijhydene.2020.04.221.
  • Cozzolino, R., S. P. Cicconardi, E. Galloni, M. Minutillo, and A. Perna. 2011. Theoretical and experimental investigations on thermal management of a PEMFC stack. International Journal of Hydrogen Energy 36 (13):8030–37. doi:10.1016/j.ijhydene.2011.01.052.
  • Euler-Rolle, N., F. Krainer, S. Jakubek, and C. Hametner. 2021. Automated synthesis of a local model network based nonlinear model predictive controller applied to the engine air path. Control Engineering Practice 110:104768. doi:10.1016/j.conengprac.2021.104768.
  • Ghorbani, B., and K. Vijayaraghavan. 2020. Developing a virtual hydrogen sensor for detecting fuel starvation in solid oxide fuel cells using different machine learning algorithms. International Journal of Hydrogen Energy 45 (51):27730–44. doi:10.1016/j.ijhydene.2020.07.154.
  • Graf, T., R. Fonk, J. Schroter, P. Hoenicke, C. Bauer, J. Kallo, and C. Willich. 2022. Investigation of a fuel cell hybrid system with a new modular test bench approach for all electric hybrid power train systems. Journal of Energy Storage 56:105999. doi:10.1016/j.est.2022.105999.
  • Huo, W., B. Xie, S. Wu, L. Wu, G. Zhang, H. Zhang, Z. Qin, Y. Zhu, R. Wang, and K. Jiao. 2023. Full-scale multiphase simulation of automobile PEM fuel cells with different flow field configurations. International Journal of Green Energy 1–16. doi:10.1080/15435075.2023.2194978.
  • Khanmohammadi, S., M. Rahmani, F. Musharavati, S. Khanmohammadi, and Q. V. Bach. 2021. Thermal modeling and triple objective optimization of a new compressed air energy storage system integrated with Rankine cycle, PEM fuel cell, and thermoelectric unit. Sustainable Energy Technologies and Assessments 43:100810. doi:10.1016/j.seta.2020.100810.
  • Krane, P., A. L. Nash, D. Ziviani, J. E. Braun, A. M. Marconnet, and N. Jain. 2022. Dynamic modeling and control of a two-reactor metal hydride energy storage system. Applied Energy 325:119836. doi:10.1016/j.apenergy.2022.119836.
  • Kuan, Y.-D., J.-Y. Chang, and K. Han-Teng. 2017. Proton exchange membrane fuel cell purge and fan control using a microcontroller. International Journal of Green Energy 14 (1):86–91. doi:10.1080/15435075.2016.1206011.
  • Legala, A., J. Zhao, and X. Li. 2022. Machine learning modeling for proton exchange membrane fuel cell performance. Energy and AI 10:100183. doi:10.1016/j.egyai.2022.100183.
  • Li, D. Z., C. Li, Z. Q. Gao, and Q. B. Jin. 2015. On active disturbance rejection in temperature regulation of the proton exchange membrane fuel cells. Journal of Power Sources 283:452–63. doi:10.1016/j.jpowsour.2015.02.106.
  • Li, Q., L. Cai, L. Yin, T. Wang, L. Li, S. Xie, and W. Chen. 2023. An Energy management strategy Considering the economy and lifetime of multistack fuel cell hybrid system. IEEE Transactions on Transportation Electrification 9 (2):3498–507. doi:10.1109/TTE.2022.3218505.
  • Li, Q., P. Liu, X. Meng, G. Zhang, Y. Ai, and W. Chen. 2022. Model prediction control-based Energy management combining self-trending prediction and subset-searching algorithm for hydrogen electric multiple unit train. IEEE Transactions on Transportation Electrification 8 (2):2249–60. doi:10.1109/TTE.2022.3149479.
  • Li, Q., L. Yin, H. Yang, T. Wang, Y. Qiu, and W. Chen. 2021. Multiobjective optimization and data-driven constraint adaptive predictive control for efficient and stable operation of PEMFC system. IEEE Transactions on Industrial Electronics 68 (12):12418–29. doi:10.1109/TIE.2020.3040662.
  • Liso, V., M. P. Nielsen, and S. K. Kær. 2009. Operation strategy for solid oxide fuel cell systems for small-scale stationary applications. International Journal of Green Energy 6 (6):583–93. doi:10.1080/15435070903364681.
  • Mahdevari, S., and M. B. Khodabakhshi. 2021. A hierarchical local-model tree for predicting roof displacement in longwall tailgates. Neural Computing & Applications 33 (21):14909–28. doi:10.1007/s00521-021-06127-y.
  • Neyerlin, K. C., W. B. Gu, J. Jorne, and H. A. Gasteiger. 2006. Determination of catalyst unique parameters for the oxygen reduction reaction in a PEMFC. Journal of the Electrochemical Society 153 (10):A1955–A63. doi:10.1149/1.2266294.
  • Nolan, J., and J. Kolodziej. 2010. Modeling of an automotive fuel cell thermal system. Journal of Power Sources 195 (15):4743–52. doi:10.1016/j.jpowsour.2010.02.074.
  • Olgun, H., A. Ersoz, D. Kaya, M. Tiris, F. Akgun, and S. Ozdogan. 2004. Simulation study of a PEM fuel cell system with steam reforming. International Journal of Green Energy 1 (3):313–25. doi:10.1081/GE-200033613.
  • Raeesi, M., S. Changizian, P. Ahmadi, and A. Khoshnevisan. 2021. Performance analysis of a degraded PEM fuel cell stack for hydrogen passenger vehicles based on machine learning algorithms in real driving conditions. Energy Conversion and Management 248:114793. doi:10.1016/j.enconman.2021.114793.
  • Saygili, Y., I. Eroglu, and S. Kincal. 2015. Model based temperature controller development for water cooled PEM fuel cell systems. International Journal of Hydrogen Energy 40 (1):615–22. doi:10.1016/j.ijhydene.2014.10.047.
  • Sharaf, O. Z., and M. F. Orhan. 2014. An overview of fuel cell technology: Fundamentals and applications. Renewable and Sustainable Energy Reviews 32:810–53. doi:10.1016/j.rser.2014.01.012.
  • Sun, L. L., H. J. Cui, and Q. S. Ge. 2022. Will China achieve its 2060 carbon neutral commitment from the provincial perspective? Advances in Climate Change Research 13 (2):169–78. doi:10.1016/j.accre.2022.02.002.
  • Wang, J., H. Jiang, G. Chen, H. Wang, L. Lu, J. Liu, and L. Xing. 2023. Integration of multi-physics and machine learning-based surrogate modelling approaches for multi-objective optimization of deformed GDL of PEM fuel cells. Energy and AI 14:100261. doi:10.1016/j.egyai.2023.100261.
  • Wang, S. B., X. H. Wu, S. Jafarmadar, P. K. Singh, S. Khorasani, M. Marefati, and A. Alizadeh. 2022. Numerical assessment of a hybrid energy system based on solid oxide electrolyzer, solar energy and molten carbonate fuel cell for the generation of electrical energy and hydrogen fuel with electricity storage option. Journal of Energy Storage 54:105274. doi:10.1016/j.est.2022.105274.
  • Wang, T., H. Huang, X. Li, X. Guo, M. Liu, and H. Lei. 2023. Optimal estimation of proton exchange membrane fuel cell model parameters based on an improved chicken swarm optimization algorithm. International Journal of Green Energy 20 (9):946–65. doi:10.1080/15435075.2022.2131432.
  • Xie, B., M. Ni, G. B. Zhang, X. Sheng, H. W. Tang, Y. F. Xu, G. Z. Zhai, and K. Jiao. 2022. Validation methodology for PEM fuel cell three-dimensional simulation. International Journal of Heat and Mass Transfer 189:122705. doi:10.1016/j.ijheatmasstransfer.2022.122705.
  • Xu, Y., Z. Yang, K. Jiao, D. Hao, and Q. Du. 2023. Development of a comprehensive transient fuel cell-battery hybrid system model and rule-based energy management strategy. International Journal of Green Energy 20 (8):844–58. doi:10.1080/15435075.2022.2119856.
  • Yan, C., J. Chen, H. Liu, and H. Lu. 2019. Model-based fault tolerant control for the thermal management of PEMFC systems. IEEE Transactions on Industrial Electronics 99:1–1.
  • Yang, D., R. Pan, Y. J. Wang, and Z. H. Chen. 2019. Modeling and control of PEMFC air supply system based on T-S fuzzy theory and predictive control. Energy 188:116078. doi:10.1016/j.energy.2019.116078.
  • Yang, Q., X. Liu, G. Xiao, Z. Wang, and X. Liu. 2023. Adaptive control strategy of fuel cell voltage stabilization for long-term operation. International Journal of Green Energy 20 (9):914–24. doi:10.1080/15435075.2022.2123244.
  • Zhang, X., Y. P. Yang, X. Y. Zhang, and H. T. Liu. 2020. Identification of performance degradations in catalyst layer and gas diffusion layer in proton exchange membrane fuel cells. Journal of Power Sources 449:227580. doi:10.1016/j.jpowsour.2019.227580.
  • Zhu, H. X., G. Zhao, L. Sun, and K. Y. Lee. 2019. Nonlinear predictive control for a boiler-turbine unit based on a local model network and immune genetic algorithm. Sustainability 11 (18). doi:10.3390/su11185102.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.