127
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of operating conditions of unmanned aerial vehicle powered by PEMFC on water and heat distributions of cell

, , , , ORCID Icon, , , & show all
Pages 1815-1828 | Received 23 Jun 2023, Accepted 15 Oct 2023, Published online: 09 Nov 2023

References

  • Atkinson, R. W., M. W. Hazard, J. A. Rodgers, R. O. Stroman, and B. D. Gould. 2016. An open-cathode fuel cell for atmospheric flight. Journal of the Electrochemical Society 164 (2):F46–F54. doi:10.1149/2.0261702jes.
  • Atyabi, S. A., and E. Afshari. 2019. Three-dimensional multiphase model of proton exchange membrane fuel cell with honeycomb flow field at the cathode side. Journal of Cleaner Production 214:738–48. doi:10.1016/j.jclepro.2018.12.293.
  • Cao, T. F., H. Lin, L. Chen, Y. L. He, and W. Q. Tao. 2013. Numerical investigation of the coupled water and thermal management in PEM fuel cell. Applied Energy 112:1115–25. doi:10.1016/j.apenergy.2013.02.031.
  • Chen, H., B. Liu, R. Liu, Q. Weng, T. Zhang, and P. Pei. 2020. Optimal interval of air stoichiometry under different operating parameters and electrical load conditions of proton exchange membrane fuel cell. Energy Conversion and Management 205:112398. doi:10.1016/j.enconman.2019.112398.
  • Dang, D. K., and B. Zhou. 2022. Investigation of liquid water behaviors inside a PEMFC cathode with a leaf-like biomimetic flow field design based on Murray’s law. International Journal of Green Energy 19 (6):577–91. doi:10.1080/15435075.2021.1951739.
  • Duan, Q., H. Wang, and J. Benziger. 2011. Transport of liquid water through nafion membranes. J. Membr. Sci 392:88–94. doi:10.1016/j.memsci.2011.12.004.
  • Evrin, R. A., and I. Dincer. 2020. Development and evaluation of an integrated solid oxide fuel cell system for medium airplanes. International Journal of Energy Research 44 (12):9674–85. doi:10.1002/er.5525.
  • Fan, L., H. Deng, Y. Zhang, Q. Du, D. Y. C. Leung, Y. Wang, and K. Jiao. 2023. Towards ultralow platinum loading proton exchange membrane fuel cells. Energy & Environmental Science 16 (4):1466–79. doi:10.1039/D2EE03169H.
  • Gong, C., L. Xing, C. Liang, and Z. Tu. 2022. Modeling and dynamic characteristic simulation of air-cooled proton exchange membrane fuel cell stack for unmanned aerial vehicle. Renewable Energy 188:1094–104. doi:10.1016/j.renene.2022.02.104.
  • Guo, H., M. H. Wang, J. X. Liu, Z. H. Nie, F. Ye, and C. F. Ma. 2015. Temperature distribution on anodic surface of membrane electrode assembly in proton exchange membrane fuel cell with interdigitated flow bed. Journal of Power Sources 273:775–83. doi:10.1016/j.jpowsour.2014.09.159.
  • Guo, H., M. H. Wang, F. Ye, and C. F. Ma. 2012. Experimental study of temperature distribution on anodic surface of MEA inside a PEMFC with parallel channels flow bed. International Journal of Hydrogen Energy 37 (17):13155–60. doi:10.1016/j.ijhydene.2012.03.138.
  • Hickner, M., N. Siegel, K. Chen, D. Hussey, D. Jacobson, and M. Arif. 2008. Understanding liquid water distribution and removal phenomena in an operating PEMFC via neutron radiography. Journal of the Electrochemical Society 155 (3):B294. doi:10.1149/1.2825298.
  • Hordé, T., P. Achard, and R. Metkemeijer. 2012. PEMFC application for aviation: Experimental and numerical study of sensitivity to altitude. International Journal of Hydrogen Energy 37 (14):10818–29. doi:10.1016/j.ijhydene.2012.04.085.
  • Huo, D., and C. M. Hall. 2023. Data-driven prediction of temperature variations in an open cathode proton exchange membrane fuel cell stack using Koopman operator. Energy and AI 14:100289. doi:10.1016/j.egyai.2023.100289.
  • Jiao, K., and X. Li. 2009. Three-dimensional multiphase modeling of cold start processes in polymer electrolyte membrane fuel cells. Electrochimica Acta 54 (27):6876–91. doi:10.1016/j.electacta.2009.06.072.
  • Jung, C. Y., H. S. Shim, S. M. Koo, S. H. Lee, and S. C. Yi. 2012. Investigations of the temperature distribution in proton exchange membrane fuel cells. Applied Energy 93:733–41. doi:10.1016/j.apenergy.2011.08.035.
  • Kang, K., S. Park, S. O. Cho, K. Chou, and H. Ju. 2014. Development of lightweight 200‐W direct methanol fuel cell system for unmanned aerial vehicle applications and flight demonstration. Fuel Cells 14 (5):694–700. doi:10.1002/fuce.201300244.
  • Lee, S. H., and R. C. Aldredge. 2015. Analytic approach to determine optimal conditions for maximizing altitude of sounding rocket: Flight in standard atmosphere. Aerospace Science and Technology 46:374–85. doi:10.1016/j.ast.2015.08.004.
  • Liu, Y., J. Gao, P. Pei, S. Yao, F. Wang, and H. Qin. 2019. Effects of dynamic changes in inlet temperature on proton exchange membrane fuel cell. Journal of Renewable Sustainable Energy 11 (4):044302. doi:10.1063/1.5050300.
  • Liu, D., R. Lin, B. Feng, and Z. Yang. 2019. Investigation of the effect of cathode stoichiometry of proton exchange membrane fuel cell using localized electrochemical impedance spectroscopy based on print circuit board. International Journal of Hydrogen Energy 44 (14):7564–73. doi:10.1016/j.ijhydene.2019.01.095.
  • Luo, L., Q. Jian, B. Huang, Z. Huang, J. Zhao, and S. Cao. 2019. Experimental study on temperature characteristics of an air-cooled proton exchange membrane fuel cell stack. Renewable Energy 143:1067–78. doi:10.1016/j.renene.2019.05.085.
  • Marefati, M., and M. Mehrpooya. 2019. Introducing and investigation of a combined molten carbonate fuel cell, thermoelectric generator, linear fresnel solar reflector and power turbine combined heating and power process. Journal of Cleaner Production 240:118247. doi:10.1016/j.jclepro.2019.118247.
  • Marefati, M., M. Mehrpooya, and S. A. Mousavi. 2019. Introducing an integrated SOFC, linear fresnel solar field, stirling engine and steam turbine combined cooling, heating and power process. International Journal of Hydrogen Energy 44 (57):30256–79. doi:10.1016/j.ijhydene.2019.09.074.
  • Marefati, M., M. Mehrpooya, and M. B. Shafii. 2019. A hybrid molten carbonate fuel cell and parabolic trough solar collector, combined heating and power plant with carbon dioxide capturing process. Energy Conversion and Management 183:193–209. doi:10.1016/j.enconman.2019.01.002.
  • Miao, T., C. Tongsh, J. Wang, P. Cheng, J. Liang, Z. Wang, W. Chen, C. Zhang, F. Xi, and Q. Du. 2022. Current density and temperature distribution measurement and homogeneity analysis for a large-area proton exchange membrane fuel cell. Energy 239:121922. doi:10.1016/j.energy.2021.121922.
  • Owejan, J. P., J. J. Gagliardo, J. M. Sergi, S. G. Kandlikar, and T. A. Trabold. 2009. Water management studies in PEM fuel cells, part I: Fuel cell design and in situ water distributions. International Journal of Hydrogen Energy 34 (8):3436–44. doi:10.1016/j.ijhydene.2008.12.100.
  • Pei, H., Z. Liu, H. Zhang, Y. Yu, Z. Tu, Z. Wan, and W. Liu. 2013. In situ measurement of temperature distribution in proton exchange membrane fuel cell I a hydrogen–air stack. Journal of Power Sources 227:72–79. doi:10.1016/j.jpowsour.2012.11.027.
  • Peng, M., L. Chen, R. Zhang, W. Xu, and W. Tao. 2022. Improvement of thermal and water management of air-cooled polymer electrolyte membrane fuel cells by adding porous media into the cathode gas channel. Electrochimica acta 412:140154. doi:10.1016/j.electacta.2022.140154.
  • Peng, L., H. Shao, D. Qiu, P. Yi, and X. Lai. 2020. Investigation of the non-uniform distribution of current density in commercial-size proton exchange membrane fuel cells. Journal of Power Sources 453:227836. doi:10.1016/j.jpowsour.2020.227836.
  • Pratt, J. W., J. Brouwer, and G. S. Samuelsen. 2007. Performance of proton exchange membrane fuel cell at high-altitude conditions. Journal of Propulsion & Power 23 (2):437–44. doi:10.2514/1.20535.
  • Rath, R., P. Kumar, S. Mohanty, and S. K. Nayak. 2019. Recent advances, unsolved deficiencies, and future perspectives of hydrogen fuel cells in transportation and portable sectors. International Journal of Energy Research 43 (15):8931–55. doi:10.1002/er.4795.
  • Renau, J., A. Lozano, J. Barroso, J. Miralles, J. Martin, F. Sanchez, and F. Barreras. 2015. Use of fuel cell stacks to achieve high altitudes in light unmanned aerial vehicles. International Journal of Hydrogen Energy 40 (42):14573–83. doi:10.1016/j.ijhydene.2015.02.071.
  • Rostami, M., M. Manshadi, and E. Afshari. 2022. Performance evaluation of two proton exchange membrane and alkaline fuel cells for use in UAVs by investigating the effect of operating altitude. International Journal of Energy Research 46 (2):1481–96. doi:10.1002/er.7263.
  • Shao, H., D. Qiu, L. Peng, P. Yi, and X. Lai. 2019. In-situ measurement of temperature and humidity distribution in gas channels for commercial-size proton exchange membrane fuel cells. Journal of Power Sources 412:717–24. doi:10.1016/j.jpowsour.2018.12.008.
  • Song, W. J., H. Chen, H. Guo, F. Ye, and J. R. Li. 2022. Research progress of proton exchange membrane fuel cells utilizing in high altitude environments. International Journal of Hydrogen Energy 47 (59):24945–62. doi:10.1016/j.ijhydene.2022.05.238.
  • Tohidi, M., S. Mansouri, and H. Amiri. 2010. Effect of primary parameters on the performance of PEM fuel cell. International Journal of Hydrogen Energy 35 (17):9338–48. doi:10.1016/j.ijhydene.2010.03.112.
  • Wang, T. 2020. Plateau climate environment factors influence on concrete durability and its mechanism. Mater’s thesis., Chang’an University.
  • Wang, L., A. Husar, T. Zhou, and H. Liu. 2003. A parametric study of PEM fuel cell performances. International Journal of Hydrogen Energy 28 (11):1263–72. doi:10.1016/S0360-3199(02)00284-7.
  • Wan, Z. M., W. X. Quan, H. Z. Yan, X. Chen, T. M. Huang, Y. Zhang, J. Zhang, and X. Z. Kong. 2019. Performance analysis of fuel cell system for unmanned aerial vehicle. CIESC Journal 70 (z2):329–35. doi:10.11949/0438-1157.201905.
  • Xiao, S., and J. X. Li. 2008. Research on key technologies of standard atmosphere database. In 2008 Asia Simulation Conference-7th International Conference on System Simulation and Scientific Computing, 1497–500. IEEE. doi: 10.1109/ASC-ICSC.2008.4675612.
  • Yang, Y., H. Jia, Z. Liu, N. Bai, X. Zhang, T. Cao, J. Zhang, P. Zhao, and X. He. 2022. Overall and local effects of operating parameters on water management and performance of open-cathode PEM fuel cells. Applied Energy 315:118978. doi:10.1016/j.apenergy.2022.118978.
  • Yang, X. G., Q. Ye, and P. Cheng. 2011. Matching of water and temperature fields in proton exchange membrane fuel cells with non-uniform distributions. International Journal of Hydrogen Energy 36 (19):12524–37. doi:10.1016/j.ijhydene.2011.07.014.
  • Yan, W. M., M. S. Zeng, T. F. Yang, C. Y. Chen, M. Amani, and P. Amani. 2020. Performance improvement of air-breathing proton exchange membrane fuel cell stacks by thermal management. International Journal of Hydrogen Energy 45 (42):22324–39. doi:10.1016/j.ijhydene.2019.08.146.
  • Yuan, W. W., K. Ou, and Y. B. Kim. 2020. Thermal management for an air coolant system of a proton exchange membrane fuel cell using heat distribution optimization. Applied Thermal Engineering 167:114715. doi:10.1016/j.applthermaleng.2019.114715.
  • Yuan, W., Y. Tang, M. Pan, Z. Li, and B. Tang. 2010. Model prediction of effects of operating parameters on proton exchange membrane fuel cell performance. Renewable Energy 35 (3):656–66. doi:10.1016/j.renene.2009.08.017.
  • Zhang, Y., Y. Li, and G. Zhu. 2019. The effects of altitude on temperature, precipitation and climatic zone in the Qinghai-Tibet plateau. Journal of Glaciology & Geocryology 41 (3):505–15.
  • Zhang, J., C. Wang, and A. Zhang. 2022. Experimental study on temperature and performance of an open-cathode PEMFC stack under thermal radiation environment. Applied Energy 311:118646. doi:10.1016/j.apenergy.2022.118646.
  • Zhang, G., X. Xie, B. Xie, Q. Du, and K. Jiao. 2019. Large-scale multi-phase simulation of proton exchange membrane fuel cell. International Journal of Heat and Mass Transfer 130:555–63. doi:10.1016/j.ijheatmasstransfer.2018.10.122.
  • Zhang, X., T. Zhang, H. Chen, and Y. Cao. 2021. A review of online electrochemical diagnostic methods of on-board proton exchange membrane fuel cells. Applied Energy 286:116481. doi:10.1016/j.apenergy.2021.116481.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.