189
Views
9
CrossRef citations to date
0
Altmetric
Research Article

A robust regressor model for estimating solar radiation using an ensemble stacking approach based on machine learning

, ORCID Icon, &
Pages 1853-1873 | Received 22 Apr 2023, Accepted 21 Oct 2023, Published online: 09 Nov 2023

References

  • Abuella, M., and B. Chowdhury 2015, October. Solar power forecasting using artificial neural networks. In 2015 North American Power Symposium (NAPS) (pp. 1–5). IEEE
  • Agbor, M. E., S. O. Udo, I. O. Ewona, S. C. Nwokolo, J. C. Ogbulezie, and S. O. Amadi. 2023. Potential impacts of climate change on global solar radiation and PV output using the CMIP6 model in West Africa. Cleaner Engineering and Technology 13:100630. doi:10.1016/j.clet.2023.100630.
  • Ağbulut, Ü., A. E. Gürel, and Y. Biçen. 2021. Prediction of daily global solar radiation using different machine learning algorithms: Evaluation and comparison. Renewable and Sustainable Energy Reviews 135:110114. doi:10.1016/j.rser.2020.110114.
  • Ahmad, M. W., M. Mourshed, and Y. Rezgui. 2018. Tree-based ensemble methods for predicting PV power generation and their comparison with support vector regression. Energy 164:465–74. doi:10.1016/j.energy.2018.08.207.
  • Ahmad, T., H. Zhang, and B. Yan. 2020. A review on renewable energy and electricity requirement forecasting models for smart grid and buildings. Sustainable Cities and Society 55:102052. doi:10.1016/j.scs.2020.102052.
  • Ahmed, R., V. Sreeram, Y. Mishra, and M. D. Arif. 2020. A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization. Renewable and Sustainable Energy Reviews 124:109792. doi:10.1016/j.rser.2020.109792.
  • Andrade, J. R., and R. J. Bessa. 2017. Improving renewable energy forecasting with a grid of numerical weather predictions. IEEE Transactions on Sustainable Energy 8 (4):1571–80. doi:10.1109/TSTE.2017.2694340.
  • Atiya, A. F. 2020. Why does forecast combination work so well? International Journal of Forecasting 36 (1):197–200. doi:10.1016/j.ijforecast.2019.03.010.
  • Bian, S., and W. Wang. 2007. On diversity and accuracy of homogeneous and heterogeneous ensembles. International Journal of Hybrid Intelligent Systems 4 (2):103–28. doi:10.3233/HIS-2007-4204.
  • Bogner, K., F. Pappenberger, and M. Zappa. 2019. Machine learning techniques for predicting the energy consumption/production and its uncertainties driven by meteorological observations and forecasts. Sustainability 11 (12):3328. doi:10.3390/su11123328.
  • Breiman, L. 1996. Bagging predictors. Machine Learning 24 (2):123–40. doi:10.1007/BF00058655.
  • Breiman, L. 2001. Random forests. Machine Learning 45 (1):5–32. doi:10.1023/A:1010933404324.
  • Carneiro, T. C., P. C. M. de Carvalho, H. Alves dos Santos, M. A. F. B. Lima, and A. P. D. S. Braga. 2022. Review on photovoltaic power and solar resource forecasting: Current status and trends. Journal of Solar Energy Engineering 144 (1). doi:10.1115/1.4051652.
  • Chen, C., S. Duan, T. Cai, and B. Liu. 2011. Online 24-h solar power forecasting based on weather type classification using artificial neural network. Solar Energy 85 (11):2856–70. doi:10.1016/j.solener.2011.08.027.
  • Chen, T., and C. Guestrin 2016, August. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM sigkdd international conference on knowledge discovery and data mining (pp. 785–94).
  • Dairi, A., F. Harrou, Y. Sun, and S. Khadraoui. 2020. Short-term forecasting of photovoltaic solar power production using variational auto-encoder driven deep learning approach. Applied Sciences 10 (23):8400. doi:10.3390/app10238400.
  • De, V., T. T. Teo, W. L. Woo, and T. Logenthiran 2018, May. Photovoltaic power forecasting using LSTM on limited dataset. In 2018 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia) (pp. 710–15). IEEE.
  • Dong, Y., H. Zhang, C. Wang, and X. Zhou. 2021. A novel hybrid model based on Bernstein polynomial with mixture of Gaussians for wind power forecasting. Applied Energy 286:116545. doi:10.1016/j.apenergy.2021.116545.
  • Erdal, H., and İ. Karahanoğlu. 2016. Bagging ensemble models for bank profitability: An empirical research on Turkish development and investment banks. Applied Soft Computing 49:861–67. doi:10.1016/j.asoc.2016.09.010.
  • Gao, B., X. Huang, J. Shi, Y. Tai, and J. Zhang. 2020. Hourly forecasting of solar irradiance based on CEEMDAN and multi-strategy CNN-LSTM neural networks. Renewable Energy 162:1665–83. doi:10.1016/j.renene.2020.09.141.
  • Gómez, R. S., A. R. Sánchez, C. G. García, and J. G. Pérez. 2020. The VIF and MSE in Raise regression. Mathematics 8 (4):605. doi:10.3390/math8040605.
  • Guermoui, M., S. Benkaciali, K. Gairaa, K. Bouchouicha, T. Boulmaiz, and J. W. Boland. 2022. A novel ensemble learning approach for hourly global solar radiation forecasting. Neural Computing and Applications 34 (4):1–23. doi:10.1007/s00521-021-06421-9.
  • Guermoui, M., J. Boland, and A. Rabehi. 2020. On the use of BRL model for daily and hourly solar radiation components assessment in a semiarid climate. The European Physical Journal Plus 135 (2):1–16. doi:10.1140/epjp/s13360-019-00085-0.
  • Guermoui, M., K. Bouchouicha, N. Bailek, and J. W. Boland. 2021. Forecasting intra-hour variance of photovoltaic power using a new integrated model. Energy Conversion and Management 245:114569. doi:10.1016/j.enconman.2021.114569.
  • Gupta, P., and R. Singh (2021, June). Univariate model for hour ahead multi-step solar irradiance forecasting. In 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC) (pp. 0494–0501). IEEE.
  • Gupta, P., and R. Singh. 2023. Combining simple and less time complex ML models with multivariate empirical mode decomposition to obtain accurate GHI forecast. Energy 263:125844. doi:10.1016/j.energy.2022.125844.
  • Gupta, R., A. K. Yadav, S. K. Jha, and P. K. Pathak 2022. Time series forecasting of solar power generation using Facebook prophet and XG boost. In 2022 IEEE Delhi section conference (DELCON)(pp. 1–5). IEEE.
  • Gupta, R., A. K. Yadav, S. K. Jha, and P. K. Pathak. 2023. Long term estimation of global horizontal irradiance using machine learning algorithms. Optik 283:170873. doi:10.1016/j.ijleo.2023.170873.
  • Gürel, A. E., Ü. Ağbulut, and Y. Biçen. 2020. Assessment of machine learning, time series, response surface methodology and empirical models in prediction of global solar radiation. Journal of Cleaner Production 277:122353. doi:10.1016/j.jclepro.2020.122353.
  • Hacioğlu, R. 2017. Prediction of solar radiation based on machine learning methods. The Journal of Cognitive Systems 2 (1):16–20.
  • Hamoud, A. 2016. Selection of best decision tree algorithm for prediction and classification of students’ action. American International Journal of Research in Science, Technology, Engineering & Mathematics 16 (1):26–32.
  • Hamze-Ziabari, S. M., and T. Bakhshpoori. 2018. Improving the prediction of ground motion parameters based on an efficient bagging ensemble model of M5′ and CART algorithms. Applied Soft Computing 68:147–61. doi:10.1016/j.asoc.2018.03.052.
  • Hassan, M. A., N. Bailek, K. Bouchouicha, A. Ibrahim, B. Jamil, A. Kuriqi, and E. S. M. El-Kenawy, E.-S. M. El-Kenawy. 2022. Evaluation of energy extraction of PV systems affected by environmental factors under real outdoor conditions. Theoretical and Applied Climatology 150 (1–2):715–29. doi:10.1007/s00704-022-04166-6.
  • Hussain, S., M. W. Mustafa, T. A. Jumani, S. K. Baloch, H. Alotaibi, I. Khan, and A. Khan. 2021. A novel feature engineered-CatBoost-based supervised machine learning framework for electricity theft detection. Energy Reports 7:4425–36. doi:10.1016/j.egyr.2021.07.008.
  • Karasu, S., and A. Altan 2019, November. Recognition model for solar radiation time series based on random forest with feature selection approach. In 2019 11th international conference on electrical and electronics engineering (ELECO) (pp. 8–11). IEEE.
  • Kar, S., V. K. Purbey, S. Suradhaniwar, L. B. Korbu, J. Kholová, S. S. Durbha, J. Adinarayana, and V. Vadez. 2021. An ensemble machine learning approach for determination of the optimum sampling time for evapotranspiration assessment from high-throughput phenotyping data. Computers and Electronics in Agriculture 182:105992. doi:10.1016/j.compag.2021.105992.
  • Kinney, J. B., and G. S. Atwal. 2014. Equitability, mutual information, and the maximal information coefficient. Proceedings of the National Academy of Sciences 111 (9):3354–59. doi:10.1073/pnas.1309933111.
  • Kumari, P., and D. Toshniwal. 2021. Extreme gradient boosting and deep neural network based ensemble learning approach to forecast hourly solar irradiance. Journal of Cleaner Production 279:123285. doi:10.1016/j.jclepro.2020.123285.
  • Kwak, N., and C. H. Choi. 2002. Input feature selection by mutual information based on Parzen window. IEEE Transactions on Pattern Analysis and Machine Intelligence 24 (12):1667–71. doi:10.1109/TPAMI.2002.1114861.
  • Lai, J. P., Y. M. Chang, C. H. Chen, and P. F. Pai. 2020. A survey of machine learning models in renewable energy predictions. Applied Sciences 10 (17):5975. doi:10.3390/app10175975.
  • Lakshmanaprabu, S. K., K. Shankar, M. Ilayaraja, A. W. Nasir, V. Vijayakumar, and N. Chilamkurti. 2019. Random forest for big data classification in the internet of things using optimal features. International Journal of Machine Learning and Cybernetics 10 (10):2609–18. doi:10.1007/s13042-018-00916-z.
  • Leva, S., A. Dolara, F. Grimaccia, M. Mussetta, and E. Ogliari. 2017. Analysis and validation of 24 hours ahead neural network forecasting of photovoltaic output power. Mathematics and Computers in Simulation 131:88–100. doi:10.1016/j.matcom.2015.05.010.
  • Lima, M. A. F., P. C. Carvalho, L. M. Fernández-Ramírez, and A. P. Braga. 2020. Improving solar forecasting using deep learning and portfolio theory integration. Energy 195:117016. doi:10.1016/j.energy.2020.117016.
  • Livieris, I. E., E. Pintelas, S. Stavroyiannis, and P. Pintelas. 2020. Ensemble deep learning models for forecasting cryptocurrency time-series. Algorithms 13 (5):121. doi:10.3390/a13050121.
  • Li, P., K. Zhou, X. Lu, and S. Yang. 2020. A hybrid deep learning model for short-term PV power forecasting. Applied Energy 259:114216. doi:10.1016/j.apenergy.2019.114216.
  • Mendes-Moreira, J., C. Soares, A. M. Jorge, and J. F. D. Sousa. 2012. Ensemble approaches for regression: A survey. ACM Computing Surveys (CSUR) 45 (1):1–40. doi:10.1145/2379776.2379786.
  • Munawar, U., and Z. Wang. 2020. A framework of using machine learning approaches for short-term solar power forecasting. Journal of Electrical Engineering and Technology 15 (2):561–69. doi:10.1007/s42835-020-00346-4.
  • Nitisanon, S., and N. Hoonchareon 2017, July. Solar power forecast with weather classification using self-organized map. In 2017 IEEE power & energy society general meeting (pp. 1–5). IEEE.
  • Nwokolo, S. C., S. O. Amadi, A. U. Obiwulu, J. C. Ogbulezie, and E. E. Eyibio. 2022. Prediction of global solar radiation potential for sustainable and cleaner energy generation using improved angstrom-Prescott and Gumbel probabilistic models. Cleaner Engineering and Technology 6:100416. doi:10.1016/j.clet.2022.100416.
  • Nwokolo, S. C., A. U. Obiwulu, and J. C. Ogbulezie. 2023. Machine learning and analytical model hybridization to assess the impact of climate change on solar PV energy production. Physics and Chemistry of the Earth, Parts A/B/C 130:103389. doi:10.1016/j.pce.2023.103389.
  • Nwokolo, S. C., N. Proutsos, E. L. Meyer, and C. C. Ahia. 2023. Machine learning and physics-based hybridization models for evaluation of the effects of climate change and urban expansion on photosynthetically active radiation. Atmosphere 14 (4):687. doi:10.3390/atmos14040687.
  • Pernía-Espinoza, A., J. Fernández-Ceniceros, J. Antonanzas, R. Urraca, and F. J. Martinez-de-Pison. 2018. Stacking ensemble with parsimonious base models to improve generalization capability in the characterization of steel bolted components. Applied Soft Computing 70:737–50. doi:10.1016/j.asoc.2018.06.005.
  • Persson, C., P. Bacher, T. Shiga, and H. Madsen. 2017. Multi-site solar power forecasting using gradient boosted regression trees. Solar Energy 150:423–36. doi:10.1016/j.solener.2017.04.066.
  • Pierro, M., F. Bucci, M. De Felice, E. Maggioni, D. Moser, A. Perotto, F. Spada, and C. Cornaro. 2016. Multi-model ensemble for day ahead prediction of photovoltaic power generation. Solar Energy 134:132–46. doi:10.1016/j.solener.2016.04.040.
  • Prasad, R., M. Ali, P. Kwan, and H. Khan. 2019. Designing a multi-stage multivariate empirical mode decomposition coupled with ant colony optimization and random forest model to forecast monthly solar radiation. Applied Energy 236:778–92. doi:10.1016/j.apenergy.2018.12.034.
  • Prasad, R., M. Ali, Y. Xiang, and H. Khan. 2020. A double decomposition-based modelling approach to forecast weekly solar radiation. Renewable Energy 152:9–22. doi:10.1016/j.renene.2020.01.005.
  • Quej, V. H., J. Almorox, J. A. Arnaldo, and L. Saito. 2017. ANFIS, SVM and ANN soft-computing techniques to estimate daily global solar radiation in a warm sub-humid environment. Journal of Atmospheric and Solar-Terrestrial Physics 155:62–70. doi:10.1016/j.jastp.2017.02.002.
  • Rokach, L. 2019. Ensemble learning: Pattern classification using ensemble methods.
  • Saber, M., T. Boulmaiz, M. Guermoui, K. I. Abdrabo, S. A. Kantoush, T. Sumi, and H. Boutaghane, D. Nohara, E. Mabrouk. 2022. Examining LightGBM and CatBoost models for wadi flash flood susceptibility prediction. Geocarto International 37 (25):7462–87. doi:10.1080/10106049.2021.1974959.
  • Saha, S., J. Roy, B. Pradhan, and T. K. Hembram. 2021. Hybrid ensemble machine learning approaches for landslide susceptibility mapping using different sampling ratios at east Sikkim Himalayan, India. Advances in Space Research 68 (7):2819–40. doi:10.1016/j.asr.2021.05.018.
  • Taylor, J. W. 2020. Forecast combinations for value at risk and expected shortfall. International Journal of Forecasting 36 (2):428–41. doi:10.1016/j.ijforecast.2019.05.014.
  • Thevenard, D., and S. Pelland. 2013. Estimating the uncertainty in long-term photovoltaic yield predictions. Solar Energy 91:432–45. doi:10.1016/j.solener.2011.05.006.
  • Van der Laan, M. J., E. C. Polley, and A. E. Hubbard. 2007. Super learner. Statistical Applications in Genetics and Molecular Biology 6 (1). doi:10.2202/1544-6115.1309.
  • Vaz, A. G. R., B. Elsinga, W. G. J. H. M. Van Sark, and M. C. Brito. 2016. An artificial neural network to assess the impact of neighbouring photovoltaic systems in power forecasting in Utrecht, the Netherlands. Renewable Energy 85:631–41. doi:10.1016/j.renene.2015.06.061.
  • Vergara, J. R., and P. A. Estévez. 2014. A review of feature selection methods based on mutual information. Neural Computing and Applications 24 (1):175–86. doi:10.1007/s00521-013-1368-0.
  • Vu, D. H., K. M. Muttaqi, and A. P. Agalgaonkar. 2015. A variance inflation factor and backward elimination based robust regression model for forecasting monthly electricity demand using climatic variables. Applied Energy 140:385–94. doi:10.1016/j.apenergy.2014.12.011.
  • Wandera, H., V. Marivate, and M. D. Sengeh 2019. Predicting school performance using a combination of traditional and non-traditional education data from South Africa. Technical Report.
  • Wang, J., P. Li, R. Ran, Y. Che, and Y. Zhou. 2018. A short-term photovoltaic power prediction model based on the gradient boost decision tree. Applied Sciences 8 (5):689. doi:10.3390/app8050689.
  • Wang, H., Y. Liu, B. Zhou, C. Li, G. Cao, N. Voropai, and E. Barakhtenko. 2020. Taxonomy research of artificial intelligence for deterministic solar power forecasting. Energy Conversion and Management 214:112909. doi:10.1016/j.enconman.2020.112909.
  • Wang, K., X. Qi, and H. Liu. 2019. A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network. Applied Energy 251:113315. doi:10.1016/j.apenergy.2019.113315.
  • Wolpert, D. H. 1992. Stacked generalization. Neural Networks 5 (2):241–59. doi:10.1016/S0893-6080(05)80023-1.
  • Yagli, G. M., D. Yang, and D. Srinivasan. 2019. Automatic hourly solar forecasting using machine learning models. Renewable and Sustainable Energy Reviews 105:487–98. doi:10.1016/j.rser.2019.02.006.
  • Zhang, J., A. Florita, B. M. Hodge, S. Lu, H. F. Hamann, V. Banunarayanan, and A. M. Brockway. 2015. A suite of metrics for assessing the performance of solar power forecasting. Solar Energy 111:157–75. doi:10.1016/j.solener.2014.10.016.
  • Zhang, C., and Y. Ma, ed. 2012. Ensemble machine learning. Boston, MA, US: Springer.
  • Zhou, Z. H. 2012. Ensemble methods: Foundations and algorithms. CRC press.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.