281
Views
4
CrossRef citations to date
0
Altmetric
Review Article

Valorization of anaerobic digestate: innovative approaches for sustainable resource management and energy production - case studies from Turkey and Poland

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1928-1943 | Received 22 Apr 2023, Accepted 21 Oct 2023, Published online: 09 Nov 2023

References

  • Arnau, S., F. L. Ángela, H. Dekker, A. Lorin, M. Giacomazzi, and M. Decorte. 2022. “EBA Activity Report 2021,” 24. https://www.europeanbiogas.eu/wp-content/uploads/2022/01/EBA-Activity-Report-2021.pdf.
  • Arteaga-Pérez, L. E., H. Grandón, M. Flores, C. Segura, and S. S. Kelley. 2017. Steam torrefaction of eucalyptus globulus for producing black pellets: A pilot-scale experience. Bioresource Technology 238:194–204. doi:10.1016/j.biortech.2017.04.037.
  • Atçı, Elif Burcu. 2020. “Biyogaz Tesisinden Kaynaklanan Atıksuların Arıtılması.” https://www.artemisaritim.com/biyogaz-tesisinden-kaynaklanan-atiksularin-aritilmasi.
  • Başar, İ. A., Ö. Çoban, M. Yekta Göksungur, Ç. Eskicioğlu, and N. Altınay Perendeci. August 2021. Enhancement of lignocellulosic biomass anaerobic digestion by optimized mild alkaline hydrogen peroxide pretreatment for biorefinery applications. Journal of Environmental Management 298:113539. doi:10.1016/j.jenvman.2021.113539.
  • Başar, A., E. Kökdemir Ünşar, H. Ünyay, and N. A. Perendeci. 2020. Ethanol, methane, or both? Enzyme dose impact on ethanol and methane production from untreated energy crop switchgrass varieties. Renewable Energy 149:287–97. doi:10.1016/j.renene.2019.12.025.
  • BiyogazDer. 2022. “2022 Yili Yekdem Biyogaz Listesi.” https://biyogazder.org/biyogaz-tesisleri/.
  • Caspar, C., K. Bougas, E. Cunningham, D. Tyrer, and J. Kreißig, …, and M. Crookes. 2019. Digestate and Compost as Fertilisers: Risk Assessment and Risk Management Options. Wood Environment & Infrastructure Solutions UK Limited, No February 121 (128):B2, D13. Digestate and Compost RMOA - Final report i2_20190208.pdf. https://ec.europa.eu/environment/chemicals/reach/pdf/40039.
  • Causer, P. T. 2019. “Why hasn’t torrefaction taken off?” http://biomassmagazine.com/articles/16329/why-hasnundefinedt-torrefaction-taken-off.
  • Chen, W. H., J. Peng, and X. T. Bi. 2015. A state-of-the-art review of biomass torrefaction, densification and applications. Renewable and Sustainable Energy Reviews 44:847–66. Elsevier. doi:10.1016/j.rser.2014.12.039.
  • Chen, T., X. Qiu, H. Feng, J. Yin, and D. Shen. 2021. Solid digestate disposal strategies to reduce the Environmental impact and energy consumption of food waste-based biogas systems. Bioresource Technology 325 (November 2020):124706. Elsevier Ltd: 124706. doi:10.1016/j.biortech.2021.124706.
  • Council Directive 86/278/EEC. n.d. Part 2: Regulatory Report, European Commission. Disposal and Recycling Routes for Sewage Sludge 1–18. 2001.
  • Cremers, M., J. Koppejan, J. Middelkamp, J. Witkamp, S. Sokhansanj, S. Melin, and S. Madrali. 2015. Status overview of torrefaction technologies. 32nd ed. Netherlands: IEA Bioenergy.
  • Crusciol, C. A. C., M. de Campos, J. Martinelli Martello, C. José Alves, C. A. C. Nascimento, P. Júlio Cesar dos Reis, and H. Cantarella. 2020. Organomineral fertilizer as source of P and K for sugarcane. Scientific Reports 10 (1):1–11. doi:10.1038/s41598-020-62315-1.
  • de Melo Benites, V., M. Sulian Junkes Dal, J. Faria Scherrer Menezes, G. Sousa Guimarães, and M. Pedro Luiz Oliveira de Almeida. 2022. Organomineral fertilizer is an agronomic efficient alternative for poultry litter phosphorus Recycling in an acidic ferralsol. Frontiers in Agronomy 4 (May):1–13. doi:10.3389/fagro.2022.785753.
  • Doddapaneni, T. R. K. C., R. Praveenkumar, H. Tolvanen, M. R. T. Palmroth, J. Konttinen, and J. Rintala. 2017. Anaerobic batch conversion of pine wood torrefaction condensate. Bioresource Technology 225:299–307. Elsevier Ltd. doi:10.1016/j.biortech.2016.11.073.
  • Dragicevic, I., T. A. Sogn, and S. Eich-Greatorex. 2018. Recycling of biogas digestates in crop production—soil and plant trace metal content and variability. Frontiers in Sustainable Food Systems 2 (August):1–14. doi:10.3389/fsufs.2018.00045.
  • Duan, N., B. Khoshnevisan, C. Lin, Z. Liu, and H. Liu. 2020. “Life cycle Assessment of anaerobic digestion of pig manure coupled with different digestate treatment technologies.” Environment International 137 (November 2019). Elsevier: 105522. doi:10.1016/j.envint.2020.105522.
  • Dupont, C., S. Oberthür, and I. von Homeyer. 2020. The Covid-19 crisis: A critical juncture for EU climate policy development? Journal of European Integration 42 (8):1095–110. doi:10.1080/07036337.2020.1853117.
  • EEA. 2019. “REGULATION (EU) 2019/1009 of the EUROPEAN PARLIAMENT and of the COUNCIL of 5 June 2019 laying down rules on the making available on the market of EU fertilising products and amending regulations (EC) No 1069/2009 and (EC) No 1107/2009 and repealing Regula.” https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02019R1009-20220716.
  • Energrom Enerji. 2022a. https://energrom.com.tr/.
  • EPA n.d. 2023 EPA non-CO2 greenhouse gas (GHG) technical Report. https://www.epa.gov/global-mitigation-non-co2-greenhouse-gases.
  • European Biogas Association EBA. 2015. Digestate Factsheet. http://europeanbiogas.eu/wp-content/uploads/2015/07/Digestate-paper-final-08072015.pdf.
  • European Environment Agency. n.d. Share of energy consumption from renewable sources in Europe. Accessed October 24, 2023. https://www.eea.europa.eu/en/analysis/indicators/share-of-energy-consumption-from
  • Fagernäs, L., E. Kuoppala, and V. Arpiainen. 2015. Composition, utilization and economic Assessment of torrefaction condensates. Energy and Fuels 29 (5):3134–42. doi:10.1021/acs.energyfuels.5b00004.
  • Farghali, M., A. I. Osman, K. Umetsu, and D. W. Rooney. 2022. Integration of biogas systems into a carbon zero and hydrogen economy: A review. In Environmental chemistry letters, Vol. 20. Springer International Publishing. doi:10.1007/s10311-022-01468-z.
  • Fawzy, S., A. I. Osman, H. Yang, J. Doran, and D. W. Rooney. 2021. Industrial biochar systems for atmospheric carbon removal: A review. Environmental Chemistry Letters 19 (4):3023–55. Springer International Publishing. doi:10.1007/s10311-021-01210-1.
  • Filipowicz, G. 2016. “Renewable energy regulations in Poland - auctions in 2017.” https://www.nortonrosefulbright.com/en/knowledge/publications/fd8e9a87/renewable-energy-regulations-in-poland—auctions-in-2017.
  • Finstein, M. S. 2010. Anaerobic digestion variants in the treatment of solid wastes. Microbe Magazine 5 (4):151–55. doi:10.1128/microbe.5.151.1.
  • Fuchs, W., and B. Drosg. 2013. Assessment of the state of the art of technologies for the processing of digestate residue from anaerobic digesters. Water Science and Technology 67 (9):1984–93. doi:10.2166/wst.2013.075.
  • Fusch, W., and B. Drosg. 2010. Technologiebewertung von Gärrestbehandlungs- Und Verwertungskonzepten. Wien: Eigenverlag der Universität für Bodenkultur.
  • GMI Poland n.d. 2023. Global Metan Initiative- Poland. https://www.globalmethane.org/partners/detail.aspx?c=poland.
  • Goswami, L., N. Arul Manikandan, J. Christon Ringle Taube, K. Pakshirajan, and G. Pugazhenthi, 2019 24. Novel Waste-Derived Biochar from Biomass Gasification Effluent: Preparation, Characterization, Cost Estimation, and Application in Polycyclic Aromatic Hydrocarbon Biodegradation and Lipid Accumulation by Rhodococcus Opacus. Environmental Science and Pollution Research 26(24):25154–66. doi:10.1007/s11356-019-05677-y.
  • Goswami, L., A. Kushwaha, S. Raj Kafle, and B.-S. Kim. 2022. Surface modification of biochar for dye removal from wastewater. Catalysts 12 (8):817. doi:10.3390/catal12080817.
  • Haas, T., and H. Sander. 2020. Decarbonizing transport in the European Union: Emission performance standards and the perspectives for a European Green Deal. Sustainability 12 (20):8381. doi:10.3390/su12208381.
  • Hailong, L., J. Lindmark, E. Nordlander, E. Thorin, E. Dahlquist, and L. Zhao. 2013. Using the solid digestate from a wet anaerobic digestion process as an energy resource. Energy Technology 1 (1):94–101. doi:10.1002/ente.201200021.
  • Hossain, A. K., C. Serrano, J. B. Brammer, A. Omran, F. Ahmed, D. I. Smith, and P. A. Davies. 2016. Combustion of fuel blends containing digestate pyrolysis oil in a multi-cylinder compression ignition engine. Fuel 171 (May):18–28. Elsevier. doi:10.1016/J.FUEL.2015.12.012.
  • Hung, C. Y., W. Tien Tsai, J. Wei Chen, Y. Quan Lin, and Y. Ming Chang. 2017. Characterization of biochar prepared from biogas digestate. Waste Management 66:53–60. Elsevier Ltd. doi:10.1016/j.wasman.2017.04.034.
  • International Energy Agency. 2022. https://enerji.gov.tr/infobank-energy-electricity.
  • Jackowiak, D., J. C. Frigon, T. Ribeiro, A. Pauss, and S. Guiot. 2011. Enhancing solubilisation and methane production kinetic of switchgrass by microwave pretreatment. Bioresource Technology 102 (3):3535–40. doi:10.1016/j.biortech.2010.11.069.
  • Jin, L., and X. Suyun. 2021. Post-treatment of food waste digestate towards land application: A review. Journal of Cleaner Production 303:127033. Elsevier Ltd. doi:10.1016/j.jclepro.2021.127033.
  • Jinwen, H., Y. Song, J. Liu, F. Evrendilek, M. Buyukada, Y. Yan, and L. Lei. 2020. Combustions of torrefaction-pretreated bamboo forest residues: Physicochemical properties, evolved gases, and kinetic mechanisms. Bioresource Technology 304(February):122960. Elsevier doi:10.1016/j.biortech.2020.122960.
  • Kratzeisen, M., N. Starcevic, M. Martinov, C. Maurer, and J. Müller. 2010. Applicability of Biogas Digestate as Solid Fuel. Fuel 89 (9):2544–48. Elsevier. doi:10.1016/J.FUEL.2010.02.008.
  • Kukharets, V., D. Juočiūnienė, T. Hutsol, O. Sukmaniuk, J. Čėsna, S. Kukharets, P. Piersa, S. Szufa, I. Horetska, and A. Shevtsova. 2023. An algorithm for managerial actions on the rational use of renewable sources of energy: Determination of the energy potential of biomass in Lithuania. Energies 16 (1):548. doi:10.3390/en16010548.
  • Kumar, K. A., D. K. Swain, and P. B. S. Bhadoria. 2018. Split application of organic nutrient improved productivity, nutritional quality and economics of rice-chickpea cropping system in lateritic soil. Field Crops Research 223 (June):125–36. doi:10.1016/j.fcr.2018.04.007.
  • Lehmann, J., and S. Joseph. 2015. Biochar for Environmental Management: Science, Technology and implementation. London: Routledge.
  • Lewandowski, W. M., M. Ryms, and W. Kosakowski. 2020. Thermal biomass conversion: A review. Processes 8 (5):516. doi:10.3390/pr8050516.
  • Liu, X., T. Lendormi, and J.-L. Lanoisellé. 2019. Overview of hygienization pretreatment for pasteurization and methane potential enhancement of Biowaste: Challenges, state of the art and alternative technologies. Journal of Cleaner Production 236 (November):117525. doi:10.1016/j.jclepro.2019.06.356.
  • Logan, M., and C. Visvanathan. 2019. Management strategies for anaerobic digestate of organic fraction of municipal solid waste: Current status and future prospects. Waste Management and Research 37 (1_suppl):27–39. doi:10.1177/0734242X18816793.
  • Luz, C., S. C. Fábio, A. Manni, V. Mulone, and V. Rocco. 2018. Biochar characteristics and early applications in anaerobic digestion-a review. Journal of Environmental Chemical Engineering 6(2):2892–909. Elsevier B.V. doi:10.1016/j.jece.2018.04.015.
  • Manouchehrinejad, M., and S. Mani. 2018, July. Torrefaction after pelletization (TAP): Analysis of torrefied pellet quality and co-products. Biomass and Bioenergy 118:93–104. doi:10.1016/j.biombioe.2018.08.015. ( Elsevier Ltd)
  • Marchetti, R., and F. Castelli. 2013. Biochar from swine solids and digestate influence nutrient dynamics and carbon dioxide release in soil. Journal of Environmental Quality 42 (3):893–901. doi:10.2134/jeq2012.0352.
  • Marczak-Grzesik, M., P. Piersa, M. Karczewski, S. Szufa, H. Ünyay, A. Kędzierska-Sar, and P. Bochenek. 2021. Modified fly ash-based adsorbents (MFA) for mercury and carbon dioxide removal from coal-fired flue gases. Energies 14 (21):7101. doi:10.3390/en14217101.
  • Ministery of Environment Urbanisation n.d. 2018 Tarimda Kullanilan Organik, Mineral ve Mikrobiyal Kaynakli Gubrelere Dair Yonetmelik. https://www.resmigazete.gov.tr/eskiler/2018/02/20180223-4.htm.
  • Mockly, Dominique. 2021. Scaling up biomethane in the Europe Union. The Relevance of Biomethane. https://gasforclimate2050.eu/wp-content/uploads/2021/12/Scaling-up-biomethane-in-the-European-Union_presentation_7-December-2021.pdf.
  • Monlau, F., M. Francavilla, C. Sambusiti, N. Antoniou, A. Solhy, A. Libutti, A. Zabaniotou, A. Barakat, and M. Monteleone. 2016. Toward a functional Integration of anaerobic digestion and pyrolysis for a sustainable resource Management. Comparison between solid-digestate and its derived pyrochar as soil amendment. Applied Energy 169 (May):652–62. Elsevier. doi:10.1016/J.APENERGY.2016.02.084.
  • Mucha, A. P., S. Dragisa, I. Dror, M. Garuti, E. D. Van Hullebusch, S. Kolbl Repinc, and J. Mun. 2019. Re-use of digestate and recovery techniques. Trace Elements in Anaerobic Biotechnologies IWA. doi:10.2166/9781789060225.
  • Mustaza, M. N. F., M. N. Mizan, H. Yoshida, and S. Izhar. 2021a. Torréfaction of mangrove wood by introducing superheated steam for biochar production. IOP Conference Series: Earth and Environmental Science 765 (1):012027. doi:10.1088/1755-1315/765/1/012027.
  • Mustaza, M. N. F., M. N. Mizan, H. Yoshida, and S. Izhar. 2021b. Torréfaction of mangrove wood by introducing superheated steam for biochar production. IOP Conference Series: Earth and Environmental Science 765 (1):12027. doi:10.1088/1755-1315/765/1/012027.
  • Neumann, J., S. Binder, A. Apfelbacher, J. Richard Gasson, P. Ramírez García, and A. Hornung. 2015. Production and Characterization of a new quality pyrolysis oil, Char and syngas from digestate – introducing the thermo-catalytic reforming process. Journal of Analytical and Applied Pyrolysis 113 (May):137–42. Elsevier. doi:10.1016/J.JAAP.2014.11.022.
  • Niu, Q., F. Ronsse, Q. Zhiyong, and D. Zhang. 2022. Fast torrefaction of large biomass particles by superheated steam: Enhanced solid products for multipurpose production. Renewable Energy 185:552–63. Elsevier Ltd. doi:10.1016/j.renene.2021.12.070.
  • Oil and Gas Institute National. 2014. Report the agricultural biogas plants in Poland. https://www.globalmethane.org/documents/Poland-Ag-Biogas-Plants-April-2014.pdf.
  • Osman, A. I., L. Chen, M. Yang, G. Msigwa, M. Farghali, S. Fawzy, D. W. Rooney, and P. Seng Yap. 2023. Cost, Environmental impact, and resilience of renewable energy under a changing climate: A review. Environmental Chemistry Letters 21 (2):741–64. Springer International Publishing. doi:10.1007/s10311-022-01532-8.
  • Osman, A. I., M. Farghali, I. Ihara, A. M. Elgarahy, A. Ayyad, N. Mehta, N. Kim Hoong, E. M. Abd El-Monaem, A. S. Eltaweil, M. Hosny, et al. 2023. Materials, fuels, upgrading, economy, and life cycle Assessment of the pyrolysis of algal and lignocellulosic biomass: A review. Environmental Chemistry Letters 21 (3):1419–76. Springer International Publishing. doi:10.1007/s10311-023-01573-7.
  • Özcan, M., S. Öztürk, and M. Yıldırım. 2011. Determining the Biogas Potential of Turkey by Different Source Types (Türkiye’nin Farklı Kaynak Tiplerine Göre Biyogaz Potansiyellerinin Belirlenmesi). 4th Energy Efficiency and Quality Symposium (4. Enerji Verimliliği ve Kalitesi Sempozyumu), 243–47. http://www.emo.org.tr/ekler/592515d4bc1ad62_ek.pdf.
  • Pawlak-Kruczek, H., L. Niedzwiecki, M. Sieradzka, A. Mlonka-Mędrala, M. Baranowski, M. Serafin-Tkaczuk, and A. Magdziarz. 2020. Hydrothermal carbonization of agricultural and municipal solid waste digestates – structure and energetic properties of the solid products. Fuel 275:117837. doi:10.1016/j.fuel.2020.117837.
  • Peng, W., F. Lü, L. Hao, H. Zhang, L. Shao, and H. Pinjing. 2020. Digestate Management for high-solid anaerobic digestion of organic wastes: A review. Bioresource Technology 297:122485. Elsevier Ltd: 122485. doi:10.1016/j.biortech.2019.122485.
  • Piersa, P., S. Szufa, J. Czerwińska, H. Ünyay, Ł. Adrian, G. Wielgosinski, A. Obraniak, W. Lewandowska, M. Marczak-Grzesik, M. Dzikuć, et al. 2021. Pine Wood and sewage sludge torrefaction process for production renewable solid biofuels and Biochar as carbon carrier for fertilizers. Energies 14(23):8176. doi:10.3390/en14238176.
  • Piersa, P., H. Unyay, S. Szufa, W. Lewandowska, R. Modrzewski, R. Ślężak, and S. Ledakowicz. 2022. An extensive review and comparison of modern biomass torrefaction reactors vs. Biomass pyrolysis—part 1. Energies 15 (6):2227. doi:10.3390/en15062227.
  • Plana, P. V., and B. Noche. 2016. A review of the Current digestate distribution models: Storage and transport. Waste Management and the Environment VIII 1 (Wm):345–57. doi:10.2495/wm160311.
  • REPowerEU Plan. 2022. REPowerEu Plan, European Commission. Brussels. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2022%3A230%3AFIN&qid=1653033742483.
  • Republic of Turkiye Ministry of energy and natural Resources. 2022c. https://enerji.gov.tr/infobank-energy-electricity.
  • Rodhe, L., and E. Salomon. 2014. ‘Handling of Digestate on Farm Level’. Institutet för jordbruks-och miljöteknik, Uppsala, Sweden 347:1–24.
  • Rostocki, A., H. Unyay, K. Ławińska, and A. Obraniak. 2022. Granulates based on bio and industrial waste and biochar in a sustainable economy. Energies 16 (1):56. doi:10.3390/en16010056.
  • Roy, B., P. Kleine-Möllhoff, and A. Dalibard. 2022. Superheated steam torrefaction of biomass residues with valorisation of platform chemicals part—2: Economic Assessment and commercialisation opportunities. Sustainability 14 (4):2338. doi:10.3390/su14042338.
  • Rulkens, W. 2008. Sewage sludge as a biomass resource for the production of energy: Overview and Assessment of the various options. Energy and Fuels 22 (1):9–15. doi:10.1021/ef700267m.
  • Şahan, M., M. Fardinpoor, V. Yılmaz, F. Yılmaz, and N. Altınay Perendeci. 2023. Effects of high temperature & pressure pretreatment process on methane production from cyanobacteria. Fermentation 9 (3):240. doi:10.3390/fermentation9030240.
  • Seadi, A., B. D. Teodorita, W. Fuchs, D. Rutz, and R. Janssen. 2013. Biogas digestate quality and utilization. The Biogas Handbook: Science, Production and Applications. doi:10.1533/9780857097415.2.267.
  • Skjærseth, J. B. 2021. Towards a European Green Deal: The evolution of EU climate and energy policy mixes. International Environmental Agreements: Politics, Law and Economics 21 (1):25–41. doi:10.1007/s10784-021-09529-4.
  • Slezak, R., H. Unyay, S. Szufa, and S. Ledakowicz. 2023. An extensive review and comparison of modern biomass reactors torrefaction vs. Biomass pyrolizers—part 2. Energies 16 (5):2212. doi:10.3390/en16052212.
  • Sobhi, M., J. Guo, M. S. Gaballah, L. Bowen, J. Zheng, X. Cui, H. Sun, and R. Dong. 2022. Selecting the optimal nutrients recovery application for a biogas slurry based on its characteristics and the local Environmental conditions: A critical review. Science of the Total Environment 814:152700. Elsevier B.V. doi:10.1016/j.scitotenv.2021.152700.
  • Song, Z., L. Fang, J. Wang, and C. Zhang. 2019. Use of biogas solid residue from anaerobic digestion as an effective amendment to remediate Cr(VI)-contaminated soils. Environmental Science and Pollution Research 26 (13):13041–53. Environmental Science and Pollution Research:. doi:10.1007/s11356-019-04786-y.
  • Stefaniuk, M., and P. Oleszczuk. 2015. Characterization of biochars produced from residues from biogas production. Journal of Analytical and Applied Pyrolysis 115 (September):157–65. Elsevier. doi:10.1016/J.JAAP.2015.07.011.
  • Stelmach, J., C. Kuncewicz, Ł. Adrian, T. Jirout, and F. Rieger. 2021. Change in mixing power of a two-PBT impeller when emptying a tank. Processes 9 (2):341. doi:10.3390/pr9020341.
  • Suchanya, W., S. Simon, G. Guibaud, P. N. L. Lens, Y. Pechaud, D. Huguenot, and E. D. van Hullebusch. 2018. Lead sorption by Biochar produced from digestates: Consequences of chemical modification and washing. Journal of Environmental Management 219:277–84. doi:10.1016/j.jenvman.2018.04.108.
  • Świechowski, K., M. Hnat, P. Stępień, S. Stegenta-Dąbrowska, S. Kugler, J. A. Koziel, and A. Białowiec. 2020. Waste to energy: Solid fuel production from biogas plant digestate and sewage sludge by torrefaction-process kinetics, fuel properties, and energy balance. Energies 13 (12):3161. doi:10.3390/en13123161.
  • Szufa, S., P. Piersa, R. Junga, A. Błaszczuk, N. Modliński, S. Sobek, M. Marczak-Grzesik, Ł. Adrian, and M. Dzikuć. 2023. Numerical modeling of the co-firing process of an in situ steam-torrefied biomass with coal in a 230 MW industrial-scale boiler. Energy 263 (January):125918. doi:10.1016/j.energy.2022.125918.
  • Szufa, S., G. Wielgosiński, P. Piersa, J. Czerwińska, M. Dzikuć, Ł. Adrian, W. Lewandowska, and M. Marczak. 2020. Torrefaction of straw from oats and maize for use as a fuel and additive to organic fertilizers—TGA analysis, kinetics as products for agricultural purposes. Energies 13 (8):2064. doi:10.3390/en13082064.
  • Szulc, W., B. Rutkowska, S. Gawroński, and E. Wszelaczyńska. 2021. Possibilities of using organic waste after biological and physical processing—an overview. Processes 9 (9):1501. doi:10.3390/pr9091501.
  • Teater, C., Z. Yue, J. MacLellan, Y. Liu, and W. Liao. 2011. Assessing solid digestate from anaerobic digestion as feedstock for ethanol production. Bioresource Technology 102 (2):1856–62. Elsevier: 1856–1862. doi:10.1016/J.BIORTECH.2010.09.099.
  • Teglia, C., A. Tremier, and J. L. Martel. 2011. Characterization of solid digestates: Part 2, Assessment of the quality and suitability for composting of six digested products. Waste and Biomass Valorization 2 (2):113–26. doi:10.1007/s12649-010-9059-x.
  • Tuğrul, K. M., E. İ̇çöz, and N. Altınay Perendeci. 2012. Determination of soil loss by sugar beet harvesting. Soil and Tillage Research 123 (July):71–77. doi:10.1016/j.still.2012.03.012.
  • Tutak, M., J. Brodny, and P. Bindzár. 2021. Assessing the level of energy and climate Sustainability in the European Union countries in the context of the European Green Deal strategy and agenda 2030. Energies 14 (6):1767. doi:10.3390/en14061767.
  • Ünyay, H., F. Yılmaz, İ. Alper Başar, N. Altınay Perendeci, I. Çoban, and E. Şahinkaya. 2022. Effects of organic loading rate on methane production from switchgrass in batch and semi-continuous stirred tank reactor system. Biomass & bioenergy 156 (July 2021):106306–11. doi:10.1016/j.biombioe.2021.106306.
  • Urząd Regulacji Energetyki. 2021. https://www.ure.gov.pl/pl/oze/potencjal-krajowy-oze/8108,Instalacje-odnawialnych-zrodel-energii-stan-na-30-czerwca-2021-r.html.
  • van der Linden, A., and A. Reichel. 2020. Bio-waste in Europe: Turning challenges into opportunities. EEA Report No 04/2020. https://www.eea.europa.eu/publications/bio-waste-in-europe.
  • Wicki, L., K. Naglis-Liepa, T. Filipiak, A. Parzonko, and A. Wicka. 2022. Is the production of agricultural biogas environmentally friendly? Does the structure of consumption of first- and second-generation raw materials in Latvia and Poland matter? Energies 15 (15):5623. doi:10.3390/en15155623.
  • Wilk, M., and A. Magdziarz. 2017. Hydrothermal carbonization, torrefaction and slow pyrolysis of Miscanthus giganteus. Energy 140:1292–304. doi:10.1016/j.energy.2017.03.031.
  • Wiśniewski, D., J. Gołaszewski, and A. Białowiec. 2015. The Pyrolysis and Gasification of Digestate from Agricultural Biogas Plant/Piroliza i Gazyfikacja Pofermentu z Biogazowni Rolniczych. Archives of Environmental Protection 41 (3):70–75. doi:10.1515/aep-2015-0032.
  • Wrzesińska-Jędrusiak, E., M. Czarnecki, P. Kazimierski, P. Bandrów, and S. Szufa. 2023. The circular economy in the Management of waste from leather processing. Energies 16 (1):564. doi:10.3390/en16010564.
  • Xu, Y., J. Li, M. Zhang, and D. Wang. 2018. Modified simultaneous saccharification and Fermentation to enhance bioethanol titers and yields. Fuel 215 (November 2017):647–54. doi:10.1016/j.fuel.2017.11.072.
  • Yuanan, H., H. Cheng, and S. Tao. 2017. Environmental and human health challenges of industrial livestock and poultry farming in China and their mitigation. Environment International 107 (October):111–30. doi:10.1016/j.envint.2017.07.003.
  • Zhang, D., X. Chen, Q. Zhiyong, H. Wang, R. Yang, W. Lin, L. Jie, W. Zhou, and F. Ronsse. 2021. Superheated steam as carrier gas and the sole heat source to enhance biomass torrefaction. Bioresource Technology 331 (July):124955. doi:10.1016/j.biortech.2021.124955.
  • Zhang, D., P. Han, R. Yang, H. Wang, W. Lin, W. Zhou, Z. Yan, and Q. Zhiyong. 2021. Fuel properties and combustion behaviors of fast torrefied Pinewood in a heavily loaded fixed-bed reactor by superheated steam. Bioresource Technology 342 (September):125929. Elsevier Ltd. doi:10.1016/j.biortech.2021.125929.
  • Zhang, D., P. Han, H. Zheng, and Z. Yan. 2022. Torrefaction of walnut oil processing wastes by superheated steam: Effects on products characteristics. Science of the Total Environment 830 (July):154649. doi:10.1016/j.scitotenv.2022.154649.
  • Zhang, D., F. Wang, A. Zhang, Y. Weiming, L. Zhihe, and X. Shen. 2019. Effect of pretreatment on chemical characteristic and thermal degradation behavior of corn stalk digestate: Comparison of dry and Wet Torrefaction. Bioresource Technology 275 (March):239–46. doi:10.1016/j.biortech.2018.12.044.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.