87
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Multi-response optimization of ejector for proton exchange membrane fuel cell anode systems by the response surface methodology and desirability function approach

ORCID Icon, , , , &
Pages 1910-1927 | Received 18 Sep 2023, Accepted 23 Oct 2023, Published online: 09 Nov 2023

References

  • ANSYS. Inc. ANSYS fluent theory guide. 2018.
  • Ashrafi, H., N. Pourmahmoud, I. Mirzaee, and N. Ahmadi. 2022. Performance improvement of proton-exchange membrane fuel cells through different gas injection channel geometries. International Journal of Energy Research 46:8781–92. doi:10.1002/er.7755.
  • Bai, S., L. Wang, X. Wang 2017. Optimization of ejector geometric parameters with hybrid artificial fish swarm algorithm for PEM fuel cell. 2017 Chinese Automation Congress (CAC), 20-22 Oct. 2017, Piscataway, NJ, USA, IEEE, 3319–22. 10.1109/CAC.2017.8243350.
  • Belen Medina, M., S. Liliana Resnik, and M. Sebastian Munitz. 2021. Optimization of a rice cooking method using response surface methodology with desirability function approach to minimize pesticide concentration. Food Chemistry 352:129364. doi:10.1016/j.foodchem.2021.129364.
  • Brunner, D. A., S. Marcks, M. Bajpai, A. K. Prasad, and S. G. Advani. 2012. Design and characterization of an electronically controlled variable flow rate ejector for fuel cell applications. International Journal of Hydrogen Energy 37:4457–66. doi:10.1016/j.ijhydene.2011.11.116.
  • Carrillo, J. A., F. J. de La Flor, and J. M. Lissén. 2018. Single-phase ejector geometry optimisation by means of a multi-objective evolutionary algorithm and a surrogate CFD model. Energy 164:46–64. doi:10.1016/j.energy.2018.08.176.
  • Chen, Q., G. Yan, and J. Yu. 2017. Performance analysis of an ejector enhanced refrigeration cycle with R290/R600a for application in domestic refrigerator/freezers. Applied Thermal Engineering 120:581–92. doi:10.1016/j.applthermaleng.2017.04.027.
  • Chen, H., R. Zhang, Z. Xia, Q. Weng, T. Zhang, and P. Pei. 2023. Experimental investigation on PEM fuel cell flooding mitigation under heavy loading condition. Applied Energy 349:121632. doi:10.1016/j.apenergy.2023.121632.
  • Choi, J., Y. Cha, J. Kong, N. Vaz, J. Lee, S.-B. Ma, J.-H. Kim, S. W. Lee, S. S. Jang, H. Ju, et al. 2022. Multi-Variate optimization of polymer electrolyte membrane fuel cells in consideration of effects of GDL compression and intrusion. Journal of the Electrochemical Society 169:014511. doi:10.1149/1945-7111/ac492f.
  • Derringer, G., and R. Suich. 1980. Simultaneous-Optimization of Several Response Variables. Journal of Quality Technology 12:214–19. doi:10.1080/00224065.1980.11980968.
  • Du, F., J. A. Hirschfeld, X. Huang, K. Jozwiak, T. A. Dao, A. Bauer, T. J. Schmidt, and A. Orfanidi. 2021. Simulative investigation on local hydrogen starvation in PEMFCs: Influence of water transport and humidity conditions. Journal of the Electrochemical Society 168:074504. doi:10.1149/1945-7111/ac148e.
  • Du, Z., Q. Liu, X. Wang, and L. Wang. 2021. Performance investigation on a coaxial-nozzle ejector for PEMFC hydrogen recirculation system. International Journal of Hydrogen Energy 46:38026–39. doi:10.1016/j.ijhydene.2021.09.048.
  • Fan, R., G. Chang, Y. Xu, and J. Xu. 2023. Multi-objective optimization of graded catalyst layer to improve performance and current density uniformity of a PEMFC. Energy 262:125580. doi:10.1016/j.energy.2022.125580.
  • Genc, O., S. Toros, and B. Timurkutluk. 2017. Determination of optimum ejector operating pressures for anodic recirculation in SOFC systems. International Journal of Hydrogen Energy 42:20249–59. doi:10.1016/j.ijhydene.2017.06.179.
  • Han, J., J. Feng, and X. Peng. 2022. Phase change characteristics and their effect on the performance of hydrogen recirculation ejectors for PEMFC systems. International Journal of Hydrogen Energy 47:1144–56. doi:10.1016/j.ijhydene.2021.10.049.
  • He, J., J. Ahn, and S.-Y. Choe. 2011. Analysis and control of a fuel delivery system considering a two-phase anode model of the polymer electrolyte membrane fuel cell stack. Journal of Power Sources 196:4655–70. doi:10.1016/j.jpowsour.2011.01.019.
  • Hosseinzadeh, E., M. Rokni, M. Jabbari, and H. Mortensen. 2014. Numerical analysis of transport phenomena for designing of ejector in PEM forklift system. International Journal of Hydrogen Energy 39:6664–74. doi:10.1016/j.ijhydene.2014.02.061.
  • Hou, M., F. Chen, and Y. Pei. 2023. Optimization of geometric parameters of ejector for fuel cell system based on multi-objective optimization method. International Journal of Green Energy 1–16. doi:10.1080/15435075.2023.2195919.
  • Hu, Z., M. Cai, and H.-H. Liang. 2008. Desirability function approach for the optimization of microwave-assisted extraction of saikosaponins from Radix Bupleuri. Separation and Purification Technology 61:266–75. doi:10.1016/j.seppur.2007.10.016.
  • Huo, W., B. Xie, S. Wu, L. Wu, G. Zhang, H. Zhang, Z. Qin, Y. Zhu, R. Wang, K. Jiao, et al. 2023. Full-scale multiphase simulation of automobile PEM fuel cells with different flow field configurations. International Journal of Green Energy 1–16. doi:10.1080/15435075.2023.2194978.
  • Jenssen, D., O. Berger, and U. Krewer. 2015. Anode flooding characteristics as design boundary for a hydrogen supply system for automotive polymer electrolyte membrane fuel cells. Journal of Power Sources 298:249–58. doi:10.1016/j.jpowsour.2015.08.005.
  • Kim, M., W.-Y. Lee, and C.-S. Kim. 2007. Development of the variable multi-ejector for a mini-bus PEMFC system. ECS Transactions 5:773–80. doi:10.1149/1.2729058.
  • Liang, J., B. Wang, Y. Yin, and K. Jiao. 2023. Experimental investigation of operating characteristics of proton exchange membrane fuel cell with different anode strategies based on the segmented cell. International Journal of Green Energy 1–18. doi:10.1080/15435075.2023.2219730.
  • Liao, C., and F. R. Best. 2010. Comprehensive gas ejector model. Journal of Thermophysics and Heat Transfer 24:516–23. doi:10.2514/1.46439.
  • Li, Y., J. Deng, and Y. He. 2022. Numerical study on the interaction of geometric parameters of a transcritical CO2 two-phase ejector using response surface methodology and genetic algorithm. Applied Thermal Engineering 214:118799. doi:10.1016/j.applthermaleng.2022.118799.
  • Liu, Q., Z. Xu, A. Wang, Z. Ping, and L. Wang. 2022. Weight analysis on geometric parameters of ejector under high back pressure condition of SOFC recirculation. International Journal of Hydrogen Energy 47:27150–65. doi:10.1016/j.ijhydene.2022.06.069.
  • Li, R., J. Yan, and C. Reddick. 2022. Optimization of three key ejector geometries under fixed and varied operating conditions: A numerical study. Applied Thermal Engineering 211:118537. doi:10.1016/j.applthermaleng.2022.118537.
  • Ma, T., M. Cong, Y. Meng, K. Wang, D. Zhu, and Y. Yang. 2021. Numerical studies on ejector in proton exchange membrane fuel cell system with anodic gas state parameters as design boundary. International Journal of Hydrogen Energy 46:38841–53. doi:10.1016/j.ijhydene.2021.09.148.
  • Maghsoodi, A., E. Afshari, and H. Ahmadikia. 2014. Optimization of geometric parameters for design a high-performance ejector in the proton exchange membrane fuel cell system using artificial neural network and genetic algorithm. Applied Thermal Engineering 71:410–18. doi:10.1016/j.applthermaleng.2014.06.067.
  • Palacz, M., J. Bodys, M. Haida, J. Smolka, and A. J. Nowak. 2022. Two-phase flow visualisation in the R744 vapour ejector for refrigeration systems. Applied Thermal Engineering 210:118322. doi:10.1016/j.applthermaleng.2022.118322.
  • Pei, P., P. Ren, Y. Li, Z. Wu, D. Chen, S. Huang, and X. Jia. 2019. Numerical studies on wide-operating-range ejector based on anodic pressure drop characteristics in proton exchange membrane fuel cell system. Applied Energy 235:729–38. doi:10.1016/j.apenergy.2018.11.005.
  • Qin, Z., K. Wu, S. Wu, Q. Du, Y. Yin, B. Wang, S. He, B. Zu, C. Zhang, F. Xi, et al. 2023. Investigation of assisted heating cold start strategies from -40 °C for proton exchange membrane fuel cell stack. International Journal of Green Energy 20:1559–72. doi:10.1080/15435075.2022.2163590.
  • Rao, S. M., and G. Jagadeesh. 2010. Vector Evaluated Particle Swarm Optimization (VEPSO) of Supersonic Ejector for Hydrogen Fuel Cells. Journal of Fuel Cell Science and Technology 7:041014. doi:10.1115/1.4000676.
  • Reis, L. B., and R. dos Santos Gioria. 2021. Optimization of liquid jet ejector geometry and its impact on flow fields. Applied Thermal Engineering 194:117132. doi:10.1016/j.applthermaleng.2021.117132.
  • Ringstad, K. E., K. Banasiak, A. Ervik, and A. Hafner. 2021. Machine learning and CFD for mapping and optimization of CO2 ejectors. Applied Thermal Engineering 199:117604. doi:10.1016/j.applthermaleng.2021.117604.
  • Rogie, B., C. Wen, M. R. Kaern, and E. Rothuizen. 2021. Optimisation of the fuelling of hydrogen vehicles using cascade systems and ejectors. International Journal of Hydrogen Energy 46:9567–79. doi:10.1016/j.ijhydene.2020.12.098.
  • Samanpour, H., N. Ahmadi, and A. Jabbary. 2022. Effects of applying brand-new designs on the performance of PEM fuel cell and water flooding phenomena. Iranian Journal of Chemistry & Chemical Engineering 2:618–35. doi:10.30492/IJCCE.2020.130908.4225.
  • Shen, C., S. Xu 2020. Design and characteristic analysis of ejector used in high-voltage proton exchange membrane fuel cell system. SAE 2020 Vehicle Electrification and Autonomous Vehicle Technology Forum, NEV 2020, December 3, 2020, Shanghai, China, SAE International. 10.4271/2020-01-5190.
  • Shukla, P. B., M. Mydur, S. Nayak, V. Krishna, and B. R. Ponangi. 2022. Design optimization of ejectors using ANN and GA. Heat Transfer 51:4768–82. doi:10.1002/htj.22522.
  • Sokolov, E. Y., and N. M. Zinger. 1970. Jet Apparatuses. 2nd ed. Moscow: Energiya.
  • Song, Y., X. Wang, L. Wang, F. Pan, W. Chen, and F. Xi. 2021. A twin-nozzle ejector for hydrogen recirculation in wide power operation of polymer electrolyte membrane fuel cell system. Applied Energy 300:117442. doi:10.1016/j.apenergy.2021.117442.
  • Uno, M., T. Shimada, and K. Tanaka. 2011. Reactant recirculation system utilizing pressure swing for proton exchange membrane fuel cell. Journal of Power Sources 196:2558–66. doi:10.1016/j.jpowsour.2010.10.094.
  • Wang, X., S. Xu, and C. Xing. 2019. Numerical and experimental investigation on an ejector designed for an 80 kW polymer electrolyte membrane fuel cell stack. Journal of Power Sources 415:25–32. doi:10.1016/j.jpowsour.2019.01.039.
  • Wu, H., Z. Liu, B. Han, and Y. Li. 2014. Numerical investigation of the influences of mixing chamber geometries on steam ejector performance. Desalination 353:15–20. doi:10.1016/j.desal.2014.09.002.
  • Xia, Z., H. Chen, W. Shan, R. Zhang, T. Zhang, and P. Pei. 2023. Behavior of current distribution evolution under reactant starvation conditions based on a single polymer electrolyte membrane fuel cell (PEMFC) with triple-serpentine flow field: An experimental study. International Journal of Hydrogen Energy 48:13650–68. doi:10.1016/j.ijhydene.2022.12.187.
  • Xia, Z., H. Chen, R. Zhang, L. Chu, T. Zhang, and P. Pei. 2022. Multiple effects of non-uniform channel width along the cathode flow direction based on a single PEM fuel cell: An experimental investigation. Journal of Power Sources 549:232080. doi:10.1016/j.jpowsour.2022.232080.
  • Xia, Z., H. Chen, T. Zhang, and P. Pei. 2022. Effect of channel-rib width ratio and relative humidity on performance of a single serpentine PEMFC based on electrochemical impedance spectroscopy. International Journal of Hydrogen Energy 47:13076–86. doi:10.1016/j.ijhydene.2022.02.047.
  • Xia, Z., H. Chen, R. Zhang, Q. Weng, T. Zhang, and P. Pei. 2023. Behavior analysis of PEMFC with geometric configuration variation during multiple-step loading reduction process. Applied Energy 349:121671. doi:10.1016/j.apenergy.2023.121671.
  • Xu, Y., G. Chang, R. Fan, and T. Cai. 2022. Multi‐objective optimization of temperature uniformity in cathode catalyst layer and performance of PEMFC with an ionomer‐gradient design. International Journal of Energy Research 46:21028–44. doi:10.1002/er.8527.
  • Xu, Y., G. Chang, R. Fan, and T. Cai. 2023. Effects of various operating conditions and optimal ionomer-gradient distribution on temperature-driven water transport in cathode catalyst layer of PEMFC. Chemical Engineering Journal 451:138924. doi:10.1016/j.cej.2022.138924.
  • Xue, H., L. Wang, H. Zhang, L. Jia, and J. Ren. 2020. Design and investigation of multi-nozzle ejector for PEMFC hydrogen recirculation. International Journal of Hydrogen Energy 45:14500–16. doi:10.1016/j.ijhydene.2020.03.166.
  • Yan, J., Q. Cai, and H. Wen. 2021. Optimization on key geometries of a highly coupled two-stage ejector. Applied Thermal Engineering 197:117362. doi:10.1016/j.applthermaleng.2021.117362.
  • Yang, Y., W. Du, T. Ma, W. Lin, M. Cong, H. Yang, and Z. Yu. 2020. Numerical studies on ejector structure optimization and performance prediction based on a novel pressure drop model for proton exchange membrane fuel cell anode. International Journal of Hydrogen Energy 45:23343–52. doi:10.1016/j.ijhydene.2020.06.068.
  • Yang, Q., W. Shi, J. Chang, and W. Bao. 2015. Maximum thrust for the rocket-ejector mode if the hydrogen fueled rocket-based combined cycle engine. International Journal of Hydrogen Energy 40:3771–76. doi:10.1016/j.ijhydene.2015.01.033.
  • Yan, J., S. Li, and Z. Liu. 2020. Numerical investigation on optimization of ejector primary nozzle geometries with fixed/varied nozzle exit position. Applied Thermal Engineering 175:115426. doi:10.1016/j.applthermaleng.2020.115426.
  • Yan, J., and H. Wen. 2022. Multi-round optimization of an ejector with different mixing chamber geometries at various liquid volume fractions of inlet fluids. Applied Thermal Engineering 200:117709. doi:10.1016/j.applthermaleng.2021.117709.
  • Yin, Y., M. Fan, K. Jiao, Q. Du, and Y. Qin. 2016. Numerical investigation of an ejector for anode recirculation in proton exchange membrane fuel cell system. Energy Conv Manag 126:1106–17. doi:10.1016/j.enconman.2016.09.024.
  • Zhang, G., S. Dykas, S. Yang, X. Zhang, H. Li, and J. Wang. 2020. Optimization of the primary nozzle based on a modified condensation model in a steam ejector. Applied Thermal Engineering 171:115090. doi:10.1016/j.applthermaleng.2020.115090.
  • Zheng, L., H. Hu, W. Wang, Y. Zhang, and L. Wang. 2022. Study on flow distribution and structure optimization in a mix chamber and diffuser of a CO2 two-phase ejector. Mathematics 10:693. doi:10.3390/math10050693.
  • Zheng, L., W. Wang, Y. Zhang, L. Wang, and W. Lu. 2022. Optimization analysis of the mixing chamber and diffuser of ejector based on Fano Flow Model. Computer Modeling in Engineering & Sciences 133:153–70. doi:10.32604/cmes.2022.021235.
  • Zhu, Y., W. Cai, C. Wen, and Y. Li. 2009. Numerical investigation of geometry parameters for design of high performance ejectors. Applied Thermal Engineering 29:898–905. doi:10.1016/j.applthermaleng.2008.04.025.
  • Zhu, Y., P. Jiang 2011. Geometry optimization study of ejector in anode recirculation solid oxygen fuel cell system. 2011 6th IEEE Conference on Industrial Electronics and Applications, 21-23 June 2011, Piscataway, NJ, USA, IEEE, 51–55. 10.1109/ICIEA.2011.5975549.
  • Zhu, Y., C. Li, F. Zhang, and P.-X. Jiang. 2017. Comprehensive experimental study on a transcritical CO2 ejector-expansion refrigeration system. Energy Conv Manag 151:98–106. doi:10.1016/j.enconman.2017.08.061.
  • Zou, H., T. Yang, M. Tang, C. Tian, and D. Butrymowicz. 2022. Ejector optimization and performance analysis of electric vehicle CO2 heat pump with dual ejectors. Energy 239:122452. doi:10.1016/j.energy.2021.122452.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.