3,212
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Extraction and Characterization of a New Natural Cellulosic Fiber from Bark of Ficus Carica Plant as Potential Reinforcement for Polymer Composites

ORCID Icon, ORCID Icon, , ORCID Icon &

References

  • Ahmed, K. S., and S. Vijayarangan. 2007. Experimental characterization of woven jute-fabric-reinforced isothalic polyester composites. Journal of Applied Polymer Science 104 (4):2650–10. doi:10.1002/app.25652.
  • Amutha, V., and B. Senthilkumar. 2021. Physical, chemical, thermal, and surface morphological properties of the bark fiber extracted from acacia concinna plant. Journal of Natural Fibers 18 (11):1661–74. doi:10.1080/15440478.2019.1697986.
  • Arthanarieswaran, V. P., A. Kumaravel, and S. S. Saravanakumar. 2015. Characterization of new natural cellulosic fiber from Acacia leucophloea bark. International Journal of Polymer Analysis and Characterization 20 (4):367–76. doi:10.1080/1023666X.2015.1018737.
  • Aruchamy, K., S. P. Subramani, S. K. Palaniappan, S. K. Pal, B. Mylsamy, and V. Chinnasamy. 2022. Effect of blend ratio on the thermal comfort characteristics of cotton/bamboo blended fabrics. Journal of Natural Fibers 19 (1):105–14. doi:10.1080/15440478.2020.1731903.
  • Azeez, T. O., D. O. Onukwuli, J. T. Nwabanne, and A. T. Banigo. 2020. Cissus populnea fiber - unsaturated polyester composites: Mechanical properties and interfacial adhesion. Journal of Natural Fibers 17 (9):1281–94. doi:10.1080/15440478.2018.1558159.
  • Badgujar, S. B., V. V. Patel, A. H. Bandivdekar, and R. T. Mahajan. 2014. Traditional uses, phytochemistry and pharmacology of Ficus carica: A review. Pharmaceutical Biology 52 (11):1487–503. doi:10.3109/13880209.2014.892515.
  • Baley, C. 2002. Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase. Composites: Part A, Applied Science and Manufacturing 33 (7):939–48. doi:10.1016/S1359-835X(02)00040-4.
  • Balu, S., P. S. Sampath, M. Bhuvaneshwaran, G. Chandrasekar, A. Karthik, and S. Sagadevan. 2020. Dynamic mechanical analysis and thermal analysis of untreated Coccinia indica fiber composites. Polimery 65 (5):357–62. doi:10.14314/polimery.2020.5.3.
  • Bhuvaneshwaran, M., P. S. Sampath, S. Balu, and S. Sagadevan. 2019. Physicochemical and mechanical properties of natural cellulosic fiber from Coccinia Indica and its epoxy composites. Polimery 64 (10):656–64. doi:10.14314/polimery.2019.10.2.
  • Bhuvaneshwaran, M., P. S. Sampath, and S. Sagadevan. 2019. Influence of fiber length, fiber content and alkali treatment on mechanical properties of natural fiber-reinforced epoxy composites. Polimery 64 (2):93–99. doi:10.14314/polimery.2019.2.2.
  • Bhuvaneshwaran, M., S. P. Subramani, S. K. Palaniappan, S. K. Pal, and S. Balu. 2021. Natural cellulosic fiber from Coccinia Indica stem for polymer composites: Extraction and characterization. Journal of Natural Fibers 18 (5):644–52. doi:10.1080/15440478.2019.1642826.
  • Bodros, E., and C. Baley. 2008. Study of the tensile properties of stinging nettle fibres (Urtica dioica). Materials Letters 62 (14):2143–45. doi:10.1016/j.matlet.2007.11.034.
  • Conrad, C. M. 1944. Determination of wax in cotton fiber, a new alcohol extraction method. Industrial Engineering Chemistry, Analytical Edition 16 (12):745–48. doi:10.1021/i560136a007.
  • De Rosa, I. M., J. M. Kenny, D. Puglia, C. Santulli, and F. Sarasini. 2010. Morphological, thermal and mechanical characterization of okra (Abelmoschus esculentus) fibres as potential reinforcement in polymer composites. Composites Science and Technology 70 (1):116–22. doi:10.1016/j.compscitech.2009.09.013.
  • Dicker, M. P., P. F. Duckworth, A. B. Baker, G. Francois, M. K. Hazzard, and P. M. Weaver. 2014. Green composites: A review of material attributes and complementary applications. Composites: Part A, Applied Science and Manufacturing 56:280–89. doi:10.1016/j.compositesa.2013.10.014.
  • Doree, C. 1950. The methods of cellulose chemistry. 2nd ed. New York: Springer US.
  • Eyupoglu, S., and N. Merdan. 2021. Physicochemical Properties of New Plant Based Fiber from Lavender Stem. Journal of Natural Fibers 19 (14):9248–58. doi:10.1080/15440478.2021.1982816.
  • Fiore, V., T. Scalici, and A. Valenza. 2014. Characterization of a new natural fiber from Arundo donax L. as potential reinforcement of polymer composites. Carbohydrate Polymers 106:77–83. doi:10.1016/j.carbpol.2014.02.016.
  • Ganeshan, P., B. NagarajaGanesh, P. Ramshankar, and K. Raja. 2018. Calotropis gigantea fibers: A potential reinforcement for polymer matrices. International Journal of Polymer Analysis and Characterization 23 (3):271–77. doi:10.1080/1023666X.2018.1439560.
  • Gopi Krishna, M., C. Kailasanathan, and B. Nagaraja Ganesh. 2020. Physico-chemical and morphological characterization of cellulose fibers extracted from sansevieria roxburghiana schult. & schult. F Leaves. Journal of Natural Fibers 19 (9):3300–16. doi:10.1080/15440478.2020.1843102.
  • Gopinath, R., P. Billigraham, and T. P. Sathishkumar. 2022. Characterization Studies on New Natural Cellulosic Fiber Extracted from the Bark of Erythrina variegata. Journal of Natural Fibers 19 (14):8246–65. doi:10.1080/15440478.2021.1961344.
  • Goutianos, S., T. Peijs, B. Nystrom, and M. Skrifvars. 2006. Development of flax fibre based textile reinforcements for composite applications. Applied Composite Materials 13 (4):199–215. doi:10.1007/s10443-006-9010-2.
  • Indran, S., and R. Edwin Raj. 2015. Characterization of new natural cellulosic fiber from cissus quadrangularis stem. Carbohydrate Polymers 117:392–99. doi:10.1016/j.carbpol.2014.09.072.
  • Indran, S., R. E. Raj, and V. S. Sreenivasan. 2014. Characterization of new natural cellulosic fiber from Cissus quadrangularis root. Carbohydrate Polymers 110:423–29. doi:10.1016/j.carbpol.2014.04.051.
  • John, M. J., and R. D. Anandjiwala. 2008. Recent developments in chemical modification and characterization of natural fiber‐reinforced composites. Polymer Composites 29 (2):187–207. doi:10.1002/pc.20461.
  • Li, Y., Y. W. Mai, and L. Ye. 2000. Sisal fibre and its composites: A review of recent developments. Composites Science and Technology 60 (11):2037–55. doi:10.1016/S0266-3538(00)00101-9.
  • Madsen, B., P. Hoffmeyer, A. B. Thomsen, and H. Lilholt. 2007. Hemp yarn reinforced composites–i. Yarn characteristics. Composites: Part A, Applied Science and Manufacturing 38 (10):2194–203. doi:10.1016/j.compositesa.2007.06.001.
  • Manivel, S., N. Pannirselvam, R. Gopinath, and T. P. Sathishkumar. 2021. Physico-mechanical, Chemical Composition and Thermal Properties of Cellulose Fiber from Hibiscus vitifolius Plant Stalk for Polymer Composites. Journal of Natural Fibers 19 (13):6961–76. doi:10.1080/15440478.2021.1941484.
  • Manivel, S., C. Prabesh, and M. Bhuvaneshwaran. 2023. Characterization Studies on New Natural Cellulosic Fiber Extracted from the Stem of Ageratina Adenophora Plant. Journal of Natural Fibers 20 (1):2156019. doi:10.1080/15440478.2022.2156019.
  • Mohanty, A. K., M. Misra, and L. T. Drzal. 2002. Sustainable bio-composites from renewable resources: Opportunities and challenges in the green materials world. Journal of Polymers and the Environment 10 (1):19–26. doi:10.1023/A:1021013921916.
  • Morvan, C., A. Jauneau, A. Flaman, J. Millet, and M. Demarty. 1990. Degradation of flax polysaccharides with purified endo-polygalacturonase. Carbohydrate Polymers 13 (2):149–63. doi:10.1016/0144-8617(90)90081-3.
  • Mylsamy, B., K. Aruchamy, S. P. Subramani, S. K. Palaniappan, S. Mavinkere Rangappa, S. Siengchin. 2023. State of the art of advanced fiber materials: future directions, opportunities, and challenges. In Fiber Materials: Design, Fabrication and Applications, ed. J. Aslam, C. Verma. De Gruyter. 357. doi:10.1515/9783110992892-014
  • Mylsamy, B., V. Chinnasamy, S. K. Palaniappan, S. P. Subramani, and C. Gopalsamy. 2020. Effect of surface treatment on the tribological properties of Coccinia Indica cellulosic fiber reinforced polymer composites. Journal of Materials Research and Technology 9 (6):16423–34. doi:10.1016/j.jmrt.2020.11.100.
  • Mylsamy, B., S. K. Palaniappan, S. P. Subramani, S. K. Pal, and K. Aruchamy. 2019. Impact of nanoclay on mechanical and structural properties of treated Coccinia indica fibre reinforced epoxy composites. Journal of Materials Research and Technology 8 (6):6021–28. doi:10.1016/j.jmrt.2019.09.076.
  • Mylsamy, B., S. K. Palaniappan, S. P. Subramani, S. K. Pal, and B. Sethuraman. 2020. Innovative characterization and mechanical properties of natural cellulosic Coccinia Indica fiber and its composites. Materials Testing 62 (1):61–67. doi:10.3139/120.111451.
  • Nagappan, S., S. P. Subramani, S. K. Palaniappan, and B. Mylsamy. 2021. Impact of alkali treatment and fiber length on mechanical properties of new agro waste Lagenaria Siceraria fiber reinforced epoxy composites. Journal of Natural Fibers 19 (13):6853–64. doi:10.1080/15440478.2021.1932681.
  • Nagarajan, K. J., and A. N. Balaji. 2016. Extraction and characterization of alkali-treated red coconut empty fruit bunch fiber. International Journal of Polymer Analysis and Characterization 21 (5):387–95. doi:10.1080/1023666X.2016.1160814.
  • Park, S., J. O. Baker, M. E. Himmel, P. A. Parilla, and D. K. Johnson. 2010. Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulase performance. Biotechnology for Biofuels 3 (1):10. doi:10.1186/1754-6834-3-10.
  • Pearl, I. A. 1967. The chemistry of lignin. New York: Marcel Dekker (Chapter 4).
  • Ponnu Krishnan, P., and J. Selwin Rajadurai. 2017. Microscopical, physico-chemical, mineralogical, and mechanical characterization of Sansevieria zeylanica fibers as potential reinforcement of composite structures. Journal of Composite Materials 51 (6):811–29. doi:10.1177/0021998316653461.
  • Reddy, N., and Y. Yang. 2008. Characterizing natural cellulose fibers from velvet leaf (Abutilon theophrasti) stems. Bioresource Technology 99 (7):2449–54. doi:10.1016/j.biortech.2007.04.065.
  • Segal, L., J. J. Creely, A. E. Martin, and C. M. Conrad. 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal 29 (10):786–94. doi:10.1177/004051755902901003.
  • Selvaraj, M., and B. Mylsamy. (2023). Characterization of New Natural Fiber from the Stem of Tithonia Diversifolia Plant. Journal of Natural Fibers, 20(1), doi:10.1080/15440478.2023.2167144
  • Shaker, K., R. M. W. U. Khan, M. Jabbar, M. Umair, A. Tariq, M. Kashif, and Y. Nawab. 2020. Extraction and characterization of novel fibers from Vernonia elaeagnifolia as a potential textile fiber. Industrial Crops and Products 152:112518. doi:10.1016/j.indcrop.2020.112518.
  • Shaker, K., Y. Nawab, and M. Jabbar. 2020. Bio-composites: Eco-friendly Substitute of Glass Fiber Composites. In Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications, O. Kharissova, L. Martínez, and B. Kharisov. ed., Switzerland: Springer. doi:10.1007/978-3-030-11155-7_108-1.
  • Shaker, K., M. Umair, S. Shahid, M. Jabbar, R. M. W. Ullah Khan, M. Zeeshan, and Y. Nawab. 2022. Cellulosic fillers extracted from Argyreia speciosa waste: A potential reinforcement for composites to enhance properties. Journal of Natural Fibers 19 (11):4210–22. doi:10.1080/15440478.2020.1856271.
  • Sreenivasan, V. S., S. Somasundaram, D. Ravindran, V. Manikandan, and R. Narayanasamy. 2011. Microstructural, physico-chemical and mechanical characterisation of Sansevieria cylindrica fibres–an exploratory investigation. Materials & Design 32 (1):453–61. doi:10.1016/j.matdes.2010.06.004.
  • Thakur, V. K., M. K. Thakur, and R. K. Gupta. 2014. Review: Raw natural fiber-based polymer composites. International Journal of Polymer Analysis and Characterization 19 (3):256–71. doi:10.1080/1023666X.2014.880016.
  • Venkateshwaran, N., and A. Elayaperumal. 2010. Banana fiber reinforced polymer composites-a review. Journal of Reinforced Plastics and Composites 29 (15):2387–96. doi:10.1177/0731684409360578.
  • Yang, P., and S. Kokot. 1996. Thermal analysis of different cellulosic fabrics. Journal of Applied Polymer Science 60 (8):1137–46. doi:10.1002/(SICI)1097-4628(19960523)60:8<1137:AID-APP6>3.0.CO;2-M.
  • Yao, F., Q. Wu, Y. Lei, W. Guo, and Y. Xu. 2008. Thermal decomposition kinetics of natural fibers: Activation energy with dynamic thermogravimetric analysis. Polymer Degradation and Stability 93 (1):90–98. doi:10.1016/j.polymdegradstab.2007.10.012.
  • Yoganandam, K., P. Ganeshan, B. Nagaraja Ganesh, and K. Raja. 2020. Characterization studies on calotropis procera fibers and their performance as reinforcements in epoxy matrix. Journal of Natural Fibers 17 (12):1706–18. doi:10.1080/15440478.2019.1588831.