2,174
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Investigation on the Mechanical Properties of Coconut Leaf Stalk Fibres Reinforced Composites

ORCID Icon &

References

  • ASTM International. 2014a. ASTM C1557-14- standard test method for tensile strength and young’s modulus of fibers. PA, USA: ASTM.
  • ASTM International. 2014b. ASTM D638-14- standard test method for tensile properties of plastics. PA, USA: ASTM.
  • ASTM International. 2019. ASTM D790-17- standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. PA, USA: ASTM.
  • Bakri, M., E. Jayamani, and S. Hamdan. 2017. Processing and characterization of banana fiber/epoxy composites: effect of Alkaline treatment. Materials Today: Proceedings 4 (2):2871–12. doi:10.1016/j.matpr.2017.02.167.
  • Balakrishnan, S., G. L. Dharmasri Wickramasinghe, and U. G. Samudrika Wijayapala. 2019. Study on dyeing behavior of banana fiber with reactive dyes. Journal of Engineered Fibers and Fabrics 14 (1):1–12. doi:10.1177/1558925019884478.
  • Biagiotti, J., D. Puglia, and J. M. Kenny. 2004. A review on natural fibre-based composites-part I. Journal of Natural Fibers 1 (2):37–68. doi:10.1300/J395v01n02_04.
  • Bougueraa, F., S. Mouhri, and S. Ettaqi. 2018. Experimental analysis of biocomposite Raphia fiber/Chitosan influence of weaving process on mechanical properties. Procedia Manufacturing 22:180–85. doi:10.1016/j.promfg.2018.03.028.
  • Bui, H., N. Sebaibi, M. Boutouil, and D. Levacher. 2020. Determination and review of physical and mechanical properties of raw and treated coconut fibers for their recycling in construction materials. Fibers 8 (6):37. doi:10.3390/fib8060037.
  • Chand, N., and F. Mohammed. 2021. Sisal-reinforced polymer composites. In Woodhead publishing series in composites science and engineering, tribology of natural fiber polymer composites, N. Chand and F. Mohammed. 84-107: Woodhead Publishing. 10.1533/9781845695057.84
  • Devaraju, A., K. Babu, and A. Gnanavelbabu. 2018. Investigation on the mechanical properties of coconut bunch fiber reinforced Epoxy with Al2O3 Nano particles composites for structural application. Materials Today: Proceedings 5 (6):14252–57. doi:10.1016/j.matpr.2018.03.006.
  • Dharmaratne, P. D., H. Galabada, R. Jayasinghe, R. Nilmini, and R. U. Halwatura. 2021. Characterization of physical, chemical and mechanical properties of Sri Lankan Coir fibers. Journal of Ecological Engineering 22 (6):55–65. doi:10.12911/22998993/137364.
  • Júnior, H. S., F. Lopes, L. Costa, and S. Monteiro. 2010. Mechanical properties of tensile tested coir fiber reinforced polyester composites. Review Material 15:113–18.
  • Kalagi, G. R., D. R. Patil, and M. N. Nayak. 2016. Natural fibre reinforced polymer composite materials for wind turbine blade applications. International Journal of Scientific Development and Research 1 (9):28–37.
  • Khan, T., M. T. H. Sultan, A. U. M. Shah, A. H. Ariffin, and M. Jawaid. 2021. The effects of stacking sequence on the tensile and flexural Properties of Kenaf/Jute Fibre Hybrid composites. Journal of Natural Fibers 18 (3):452–63. doi:10.1080/15440478.2019.1629148.
  • Kumar, R., M. I. Ul Haq, A. Raina, and A. Anand. 2019. Industrial applications of natural fibre-reinforced polymer composites – challenges and opportunities. International Journal of Sustainable Engineering 12 (3):212–20. doi:10.1080/19397038.2018.1538267.
  • Li, X., Y. Wei, J. Xu, N. Xu, and Y. He. 2018. Quantitative visualization of lignocellulose components in transverse sections of moso bamboo based on FTIR macro‑ and micro‑spectroscopy coupled with chemometrics. Biotechnology for Biofuels 11 (1):263. doi:10.1186/s13068-018-1251-4.
  • Madueke, C. I., O. M. Mbah, and R. Umunakwe. 2022. A review on the limitations of natural fibres and natural fibre composites with emphasis on tensile strength using coir as a case study. Polymer Bulletin 80 (4):3489–506. doi:10.1007/s00289-022-04241-y.
  • Maheswari, C. U., K. O. Reddy, E. Muzenda, B. R. Guduri, and A. V. Rajulu. 2012. Extraction and characterization of cellulose microfibrils from agricultural residue – Cocos nucifera L. Biomass & bioenergy 46:555–63. doi:10.1016/j.biombioe.2012.06.039.
  • Mbise, E., M. Masombe, and T. Venance. 2022. Study of physical and mechanical properties of Sansevieria Ehrenbergii Fibres (SEF). Journal of Textile Engineering Fashion Technology 8 (2):38‒46. doi:10.15406/jteft.2022.08.00299.
  • Mishra, L., and G. Basu. 2020. Coconut fibre: Its structure, properties and applications. In Handbook oF natural fibres volume 1: types, properties and factors affecting breeding and cultivation, ed. R. M. Kozłowski and M. Mackiewicz-Talarczyk, 2nd ed., 231–55. Cambridge, UK: Woodhead Publishing Series in Textiles.
  • Ouarhim, W., N. Zari, and A. Qaiss. 2019. Mechanical performance of natural fibers–based thermosetting composites. In Woodhead publishing series in composites science and engineering, mechanical and physical testing of biocomposites, fibre-reinforced composites and Hybrid composites, ed. M. Jawaid, M. Thariq, and N. Saba, 43–60. Cambridge, UK: Woodhead Publishing.
  • Oushabi, A., S. Sair, F. Oudrhiri Hassani, Y. Abboud, O. Tanane, and A. El Bouari. 2017. The effect of alkali treatment on mechanical, morphological and thermal properties of date palm fibers (DPFs): Study of the interface of DPF–Polyurethane composite. South African Journal of Chemical Engineering 23:116–23. doi:10.1016/j.sajce.2017.04.005.
  • Priya, N. A. S., P. V. Raju, and P. Naveen. 2014. Experimental testing of polymer reinforced with coconut coir fiber composites. International Journal Emerging Technology Advence Engineering 4 (12):453–60.
  • Rafidison, B. H., H. Ramasawmy, J. Chummun, and F. B. V. Florens. 2020. Using infrared spectrum analyses to predict tensile strength of fibres in a group of closely related plant species: Case of Mascarenes Pandanus spp. SN Applied Sciences 2 (11):1922. doi:10.1007/s42452-020-03667-1.
  • Ramasawmy, H., J. Chummun, F. B. V. Florens, and H. Joyram. 2021. Palm leaves as potential natural-fibre source for a Tropical Island developing state. Journal of Natural Fibers 18 (4):607–19. doi:10.1080/15440478.2019.1642823.
  • Schellbach, S. L., S. N. Monteiro, and J. W. Drelich. 2016. A novel method for contact angle measurements on natural fibers. Materials Letters 164:599–604. doi:10.1016/j.matlet.2015.11.039.
  • Sengupta, S., and G. Basu. 2016. Properties of coconut fiber. In Encyclopedia of Renewable and Sustainable Materials, S. Hashmi and I. A. Choudhury, 263–81. Amsterdam: Elsevier.
  • Srinivasababu, N. 2018. Fabrication of Chemically Treated Pure-Bred Coconut Leaf Sheath Fibre Reinforced Composites and Determination of Mechanical Properties. Macromolecular Symposia 382 (1):1800119. doi:10.1002/masy.201800119.
  • Thirumurugan, R., M. Jayaraj, D. Shanmugam, and T. Ramkumar. 2021. Characterization of new natural cellulosic fiber from Coconut Tree Primary Flower Leaf Stalk Fiber(CPFLSF). Journal of Natural Fibers 18 (11):1844–56. doi:10.1080/15440478.2019.1701608.
  • Verma, D., and P. Gope. 2015. The use of coir/coconut fibers in composites. In Biofiber reinforcements in composite materials, O. Faruk and M. Sain. 285-319: Woodhead Publishing. 10.1533/9781782421276.3.285
  • Xu, C., S. Zhu, C. Xing, D. Li, N. Zhu, H. Zhou, and F. Zhao. 2015. Isolation and properties of cellulose Nanofibrils from coconut palm petioles by different mechanical process. Plos One 10 (4):e0122123. doi:10.1371/journal.pone.0122123.
  • Zhao, Y., C. Xu, C. Xing, X. Shi, L. M. Matuana, H. Zhou, and X. Ma. 2015. Fabrication and characteristics of cellulose nanofibril films from coconut palm petiole prepared by different mechanical processing. Industrial Crops and Products 65:96–101. doi:10.1016/j.indcrop.2014.11.057.