711
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Development of the ELECTRE Method Under Pythagorean Fuzzy Sets Based on Existing Correlation Coefficients for Cotton Fabric Selection

ORCID Icon & ORCID Icon

References

  • Akgül, E., M. İ. Bahtiyari, E. K. Aydoğan, and H. Benli. 2022. Use of TOPSIS method for designing different textile products in coloration via natural source “Madder”. Journal of Natural Fibers 19 (14):8993–22. doi:10.1080/15440478.2021.1982106.
  • Akram, M., F. Ilyas, and A. N. Al-Kenani. 2021. Two-phase group decision-aiding system using ELECTRE III method in Pythagorean fuzzy environment. Arabian Journal for Science and Engineering 46 (4):3549–66. doi:10.1007/s13369-020-05003-6.
  • Akram, M., F. Ilyas, and H. Garg. 2020. Multi-criteria group decision making based on ELECTRE I method in Pythagorean fuzzy information. Soft Computing 24 (5):3425–53. doi:10.1007/s00500-019-04105-0.
  • Akram, M., F. Ilyas, and H. Garg. 2021. ELECTRE-II method for group decision-making in Pythagorean fuzzy environment. Applied Intelligence 51 (12):8701–19. doi:10.1007/s10489-021-02200-0.
  • Akram, M., A. Luqman, and J. C. R. Alcantud. 2021. Risk evaluation in failure modes and effects analysis: Hybrid TOPSIS and ELECTRE I solutions with Pythagorean fuzzy information. Neural Computing & Applications 33 (11):5675–703. doi:10.1007/s00521-020-05350-3.
  • Ak, M. F., M. Yucesan, and M. Gul. 2022. Occupational health, safety and environmental risk assessment in textile production industry through a Bayesian BWM-VIKOR approach. Stochastic Environmental Research and Risk Assessment 36 (2):629–42. doi:10.1007/s00477-021-02069-y.
  • Alam, M. S., and A. Ghosh. 2013. Selection of cotton fabrics for optimal comfort properties using multi-criteria decision making. Journal of Textile and Apparel, Technology and Management 8 (3):1–8.
  • Atanassov, K. T. 1986. Intuitionistic fuzzy sets. Fuzzy Sets and Systems 20 (1):87–96. doi:10.1016/S0165-0114(86)80034-3.
  • Bulut, M., and E. Özcan. 2023. Ranking of advertising goals on social network sites by Pythagorean fuzzy hierarchical decision making: Facebook. Engineering Applications of Artificial Intelligence 117 (January):105542. doi:10.1016/j.engappai.2022.105542.
  • Chakraborty, S., and P. Chatterjee. 2017. A developed meta-model for selection of cotton fabrics using design of experiments and TOPSIS method. Journal of the Institution of Engineers (India): Series E 98 (2):79–90. doi:10.1007/s40034-017-0108-x.
  • Chen, T. -Y. 2018. An effective correlation-based compromise approach for multiple criteria decision analysis with Pythagorean fuzzy information. Journal of Intelligent & Fuzzy Systems 35 (3):3529–41. doi:10.3233/JIFS-18021.
  • Chen, T. -Y. 2019. Multiple criteria decision analysis under complex uncertainty: A Pearson-like correlation-based Pythagorean fuzzy compromise approach. International Journal of Intelligent Systems 34 (1):114–51. doi:10.1002/int.22045.
  • Chen, T. -Y. 2020. New Chebyshev distance measures for Pythagorean fuzzy sets with applications to multiple criteria decision analysis using an extended ELECTRE approach. Expert Systems with Applications 147 (June):113164. doi:10.1016/j.eswa.2019.113164.
  • Ejegwa, P. A. 2021. Generalized triparametric correlation coefficient for Pythagorean fuzzy sets with application to MCDM problems. Granular Computing 6 (3):557–66. doi:10.1007/s41066-020-00215-5.
  • Ejegwa, P. A., and J. A. Awolola. 2021. Real-life decision making based on a new correlation coefficient in Pythagorean fuzzy environment. Ann Fuzzy Math Inform 21 (1):51–67.
  • Ejegwa, P. A., S. Wen, Y. Feng, W. Zhang, and J. Liu.2022. A three-way Pythagorean fuzzy correlation coefficient approach and its applications in deciding some real-life problems. Applied Intelligence April10.1007/s10489-022-03415-5.
  • Garg, H. 2016. A novel correlation coefficients between Pythagorean fuzzy sets and its applications to decision-making processes. International Journal of Intelligent Systems 31 (12):1234–52. doi:10.1002/int.21827.
  • Guarnieri, P., and F. Trojan. 2019. Decision making on supplier selection based on social, ethical, and environmental criteria: A study in the textile industry. Resources Conservation and Recycling 141:347–61. doi:10.1016/j.resconrec.2018.10.023.
  • Gupta, S. K. 2022. Comparison of multi-criteria decision making methods for selection of handmade carpets. Journal of Natural Fibers 19 (2):658–68. doi:10.1080/15440478.2020.1758864.
  • Hussain, A., K. Ullah, M. Mubasher, T. Senapati, and S. Moslem. 2023. Interval-valued Pythagorean fuzzy information aggregation based on Aczel-Alsina operations and their application in multiple attribute decision making. IEEE Access 1–1. doi:10.1109/ACCESS.2023.3244612.
  • Iftikhar, F., Z. Ali, T. Hussain, A. Nazir, and D. C. Adolphe. 2021. A multi-criteria decision-making approach for woven fabric selection and grading for ladies summer apparel. Journal of Natural Fibers 18 (10):1481–90. doi:10.1080/15440478.2019.1691123.
  • Kuo, C. -F.J., W. L. Lan, J. -W. Wang, J. -B. Chen, and P. -H. Lin. 2019. Hot-melt pressure-sensitive adhesive for seamless bonding of nylon fabric part II: Process parameter optimization for seamless bonding of nylon fabric. Textile Research Journal 89 (12):2294–304. doi:10.1177/0040517518790970.
  • Li, S., Q. Huang, B. Hu, J. Pan, J. Chen, J. Yang, X. Zhou, X. Wang, and H. Yu. 2023. Mining method optimization of difficult-to-mine complicated orebody using Pythagorean fuzzy sets and TOPSIS method. Sustainability 15 (4):3692. doi:10.3390/su15043692.
  • Lin, M., C. Huang, R. Chen, H. Fujita, and X. Wang. 2021. Directional correlation coefficient measures for Pythagorean fuzzy sets: Their applications to medical diagnosis and cluster analysis. Complex & Intelligent Systems 7 (2):1025–43. doi:10.1007/s40747-020-00261-1.
  • Li, D., and W. Zeng. 2018. Distance measure of Pythagorean fuzzy sets. International Journal of Intelligent Systems 33 (2):348–61. doi:10.1002/int.21934.
  • Martyn, K., and M. Kadziński. 2023. Deep preference learning for multiple criteria decision analysis. European Journal of Operational Research 305 (2):781–805. doi:10.1016/j.ejor.2022.06.053.
  • Mitra, A. 2022a. Application of multi-objective optimization on the basis of ratio analysis (MOORA) for selection of cotton fabrics for optimal thermal comfort. Research Journal of Textile and Apparel 26 (2):187–203. doi:10.1108/RJTA-02-2021-0021.
  • Mitra, A. 2022b. Selection of cotton fabrics using EDAS method. Journal of Natural Fibers 19 (7):2706–18. doi:10.1080/15440478.2020.1821289.
  • Moslehi, A., M. A. Dashti Rahmatabadi, H. Arman, and P. P. Rossi. 2023. Determination of optimized mix design of reactive powder concrete. Advances in Civil Engineering (February): 2023:e4421095. doi:10.1155/2023/4421095.
  • Peng, X., and Y. Yang. 2016. Fundamental properties of interval-valued Pythagorean fuzzy aggregation operators. International Journal of Intelligent Systems 31 (5):444–87. doi:10.1002/int.21790.
  • Singh, Y., and D. C. Bisht. 2021. A hybrid method for multi-criteria group decision making under Pythagorean fuzzy environment. International Journal of Modelling and Simulation 41 (5):376–84. doi:10.1080/02286203.2021.1983079.
  • Singh, S., and A. H. Ganie. 2020. On some correlation coefficients in Pythagorean fuzzy environment with applications. International Journal of Intelligent Systems 35 (4):682–717. doi:10.1002/int.22222.
  • Thao, N. X. 2020. A new correlation coefficient of the Pythagorean fuzzy sets and its applications. Soft Computing 24 (13):9467–78. doi:10.1007/s00500-019-04457-7.
  • Uddin, S., S. M. Ali, G. Kabir, S. A. Suhi, R. Enayet, and T. Haque. 2019. An AHP-ELECTRE framework to evaluate barriers to green supply chain management in the leather industry. International Journal of Sustainable Development & World Ecology 26 (8):732–51. doi:10.1080/13504509.2019.1661044.
  • Wang, J., W. Jiang, X. Tao, B. Gong, and S. Yang. January 2023. Belief structure-based Pythagorean fuzzy LINMAP for multi-attribute group decision-making with spatial information. International Journal of Fuzzy Systems. doi: 10.1007/s40815-022-01445-2.
  • Yager, R. R. 2013. Pythagorean fuzzy subsets. In Proceedings of the 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), 57–61. Edmonton, Canada: IEEE. doi:10.1109/IFSA-NAFIPS.2013.6608375.
  • Yager, R. R. 2014. Pythagorean membership grades in multicriteria decision making. IEEE Transactions on Fuzzy Systems 22 (4):958–65. doi:10.1109/TFUZZ.2013.2278989.
  • Yan, D., K. Wu, P. A. Ejegwa, X. Xie, and Y. Feng. 2023. Pythagorean fuzzy partial correlation measure and its application. Symmetry 15 (1):216. doi:10.3390/sym15010216.
  • Ye, J., and T. -Y. Chen. 2022a. Pythagorean fuzzy sets combined with the PROMETHEE method for the selection of cotton woven fabric. Journal of Natural Fibers 19 (16):12447–61. doi:10.1080/15440478.2022.2072993.
  • Ye, J., and T. -Y. Chen. 2022b. Selection of cotton fabrics using Pythagorean fuzzy topsis approach. Journal of Natural Fibers 19 (14):9085–100. doi:10.1080/15440478.2021.1982439.
  • Zhang, X., and Z. Xu. 2014. Extension of TOPSIS to multiple criteria decision making with Pythagorean fuzzy sets. International Journal of Intelligent Systems 29 (12):1061–78. doi:10.1002/int.21676.
  • Zhou, J. -J., Y. -A. Zhu, L. Li, and X. -C. Shi. 2023. Similarity measure-based three-way decisions in Pythagorean fuzzy information systems and its application in FANETs. Journal of Intelligent & Fuzzy Systems Preprint (Preprint:1–16. doi:10.3233/JIFS-221424.