1,803
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Influence of the Extraction Location on the Physical and Mechanical Properties of the Pseudo-Trunk Banana Fibers

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Belaadi, A., S. Amroune, and M. Bourchak. 2020. Effect of eco-friendly chemical sodium bicarbonate treatment on the mechanical properties of flax fibers: Weibull statistics. International Journal of Advanced Manufacturing Technology 106:1753–16. doi:10.1007/s00170-019-04628-8.
  • Betene, A. D. O., F. E. Betene, F. Martoïa, P. J. Dumont, A. Atangana, and P. M. A. Noah. 2020. Physico-chemical and thermal characterization of some lignocellulosic fibers: Ananas comosus (AC), Neuropeltis acuminatas (NA) et Rhecktophyllum camerunense (RC). Journal of Minerals and Materials Characterization and Engineering 8 (4):205–22. doi:10.4236/jmmce.2020.84014.
  • Betené, A. D. O., E. F. Betené, E. F. P. Ngali, P. M. A. Noah, B. Ndiwé, A. G. Soppie, A. Atangana, and R. Moukené. 2022. Influence of sampling area and extraction method on the thermal, physical and mechanical properties of Cameroonian Ananas comosus leaf fibers. Heliyon 8 (8):e10127. doi:10.1016/j.heliyon.2022.e10127.
  • Bezazi, A., A. Belaadi, M. Bourchak, F. Scarpa, and K. Boba. 2014. Novel extraction techniques, chemical and mechanical characterisation of Agave americana L. natural fibers. Composites Part B: Engineering 66:194–203. doi:10.1016/j.compositesb.2014.05.014.
  • Biswal, M., S. Mohanty, and S. K. Nayak. 2011. Effect of mercerized banana fiber on the mechanical and morphological characteristics of organically modified fiber-reinforced polypropylene nanocomposites. Polymer-Plastics Technology and Engineering 50:1458–69. doi:10.1080/03602559.2011.593079.
  • Blos, H. L., and A. M. Donald. 1999. In situ ESEM study of the deformation of elementary flax fibers. Journal of Materials Science 34 (13):3029–34. doi:10.1023/A:1004650126890.
  • Charlet, K., C. Baley, C. Morvan, J. P. Jernot, M. Gomina, and J. Bréard. 2007. Characteristics of Hermès flax fibers as a function of their location in the stem and properties of the derived unidirectional composites. Compos A Appl Sci Manuf 38:1912–21. doi:10.1016/j.compositesa.2007.03.006.
  • Charlet, K., J. P. Jernot, M. Gomina, J. Bréard, C. Morvan, and C. Baley. 2009. Influence of an Agatha flax fiber location in a stem on its mechanical, chemical and morphological properties. Composites Science and Technology 69 (9):1399–403. doi:10.1016/j.compscitech.2008.09.002.
  • Chengoué, A. M., T. Tchotang, C. B. Fokam, and B. Kenmeugne. 2020. Influence of extractions techniques on the physico-mechanical properties of banana pseudo-stem fibers. Journal of Materials and Environmental Science 11 (7):1121–28.
  • De Rosa, I. M., J. M. Kenny, D. Puglia, C. Santulli, and F. Sarasini. 2010. Morphological, thermal and mechanical characterization of okra (Abelmoschus esculentus) fibres as potential reinforcement in polymer composites. Composites Science and Technology, 70 (1):116–122. doi:10.1016/j.compscitech.2009.09.013
  • Duval, A., A. Bourmaud, L. Augier, and C. Baley. 2011. Influence of the sampling area of the stem on the mechanical properties of hemp fibers. Materials Letters 65 (4):797–800. doi:10.1016/j.matlet.2010.11.053.
  • Efeze, D. N., N. R. S. Tagne, S. M. Anafack, P. W. Huisken, E. T. Mbou, and E. Njeugna. 2020. Studies on the tensile properties of Banana stalk fibers from Njombe – Penja –Cameroon. International Journal of Polymer and Textile Engineering 7:(1:68‑75. doi:10.14445/23942592/IJPTE-V7I1P110.
  • Faostat. 2016. Agriculture organization of the United Nations statistics division. Economic and social development department, Rome, Italy. accessed on 31 December 2016. Available online: http://faostat3.fao.org/home/E
  • Indira, K. N., P. Jyotishkumar, and T. Sabu. 2013. Mechanical properties and failure topography of banana fiber PF macrocomposites fabricated by RTM and CM techniques. International Scholarly Research Notices 2013:936048. doi:10.1155/2013/936048.
  • Jamshaid, H., U. Hussain, R. Mishra, M. Tichy, and M. Muller. 2021. Turning textile waste into valuable yarn. Cleaner Engineering and Technology 5:100341. doi:10.1016/j.clet.2021.100341.
  • Jordan, W. and P. Chester. 2017. Improving the Properties of Banana Fiber Reinforced Polymeric Composites by Treating the Fibers. Procedia Engineering, 200:283–289. 10.1016/j.proeng.2017.07.040
  • Khazaei, J. 2008. Water absorption characteristics of three wood varieties. Cercetări Agronomice în Moldova 41 (2):134.
  • Libog, L., J. Aime, N. Joseph, B. Ndiwe, L. Meva’a Et, and A. Ateba. 2021. Physico-chemical and thermal characterization of the banana pseudo-stem fibers (BF). European Journal of Experimental Biology 9:33–52.
  • Mewoli, A. E., C. Segovia, E. F. Betené, A. Ateba, P. M. A. Noah, B. Ndiwe, and A. E. Njom. 2020. Physical-chemical and mechanical characterization of the bast fibers of Triumfetta cordifolia A. Rich. from the equatorial region of cameroon. Journal of Minerals and Materials Characterization and Engineering 8 (4):163–76. doi:10.4236/jmmce.2020.84011.
  • Moeini, B., H. Haack, N. Fairley, V. Fernandez, T. R. Gengenbach, C. D. Easton, and M. R. Linford. 2021. Box plots: A simple graphical tool for visualizing overfitting in peak fitting as demonstrated with X-ray photoelectron spectroscopy data. Journal of Electron Spectroscopy and Related Phenomena 250:147094. doi:10.1016/j.elspec.2021.147094.
  • Ndako, J. A., J. A. Olisa, I. C. Ifeanyichukwu, S. K. S. Ojo, and C. E. Okolie. 2020. Evaluation of diagnostic assay of patients with enteric fever by the box-plot distribution method. New Microbes and New Infections 38:100795. doi:10.1016/j.nmni.2020.100795.
  • Ndoumou, R. L., D. Soulat, A. R. Labanieh, M. Ferreira, L. Meva’a, and A. Atangana. 2022. Characterization of tensile properties of cola lepidota fibers. Fibers 10 (1):6. doi:10.3390/fib10010006.
  • Obame, S. V., A. D. O. Betené, P. M. A. Noah, F. E. Betené, and A. Atangana. 2022. Characterization of the Neuropeltis acuminatas liana fiber treated as composite reinforcement. Results in Materials 16:100327. doi:10.1016/j.rinma.2022.100327.
  • Raghavendra, S., K. G. Satyanarayana, and B. S. Pilar. 2017. Evaluation of structural, tensile and thermal properties of banana fibers. Journal des fibers naturelles 14:485–97. doi:10.1080/15440478.2016.1212771.
  • Ramesh, M., T. S. A. Atreya, U. Aswin, H. Eashwar, and C. Deepa. 2014. Processing and mechanical property evaluation of banana fiber reinforced polymer composites. Procedia Engineering 97:563–72. doi:10.1016/j.proeng.2014.12.284.
  • Ramesh, M., C. Deepa, M. T. Selvan, and K. H. Reddy. 2020. Effect of alkalization on characterization of ripe bulrush (Typha domingensis) grass fiber reinforced epoxy composites. Journal of Natural Fibers 19:931–42. doi:10.1080/15440478.2020.1764443.
  • Romhany, G., J. Karger-Kocsis, and T. Czigany. 2003. Tensile fracture and failure behavior of technical flax fibers. Journal of Applied Polymer Science 90 (13):3638–45. doi:10.1002/app.13110.
  • Saikia, D. 2010. Studies of water absorption behavior of plant fibers at different temperatures. International Journal of Thermophysics 31 (4‑5):1020‑1026. doi:10.1007/s10765-010-0774-0.
  • Sango, T., A. M. Y. Cheumani, L. Duchatel, A. Marin, M. Kor Ndikontar, N. Joly, and J. Lefebvre. 2018. Step–wise multi–scale deconstruction of banana pseudo–stem (Musa acuminata) biomass and morpho–mechanical characterization of extracted long fibres for sustainable applications. Industrial Crops and Products, 122:657–668. doi:10.1016/j.indcrop.2018.06.050.
  • Satyanarayana, K. G., J. L. Guimarães, and F. Wypych. 2007. Studies on lignocellulosic fibers of Brazil. Part I: Source, production, morphology, properties and applications. Composites Part A, Applied Science and Manufacturing 38 (7):1694‑1709. doi:10.1016/j.compositesa.2007.02.006.
  • Sikamé, T. N. R., E. Njeugna, M. Fogue, J. -Y. Drean, A. Nzeukou, and D. Fokwa. 2014. Study of water absorption in raffia vinifera fibers from Bandjoun, Cameroon. Scientific World Journal 2014:912320. doi:10.1155/2014/912380.
  • Singh, G., S. Jose, D. Kaur, and B. Soun. 2020. Extraction and Characterization of Corn Leaf Fiber. Journal of Natural Fibers, 19 (5):1581–1591. doi:10.1080/15440478.2020.1787914.
  • Stawski, D., E. Çalişkan, N. Yilmaz, and I. Krucińska. 2020. Thermal and Mechanical Characteristics of Okra (Abelmoschus esculentus) Fibers Obtained via Water- and Dew-Retting. Applied Sciences, 10 (15):5113. doi:10.3390/app10155113
  • Subramanya, R., G. S. Kestur, and S. P. Balachandra. 2017. Evaluation of structural, tensile and thermal properties of banana fibers. Journal of Natural Fibers 14 (4):485‑497. doi:10.1080/15440478.2016.1212771.
  • Sudha Mishra S. and A. Das Mohapatra. 2022. Weavers’ perception towards sustainability of sambalpuri handloom: A Tukey’s HSD test analysis. Materials Today: Proceedings, 51:217–227. doi:10.1016/j.matpr.2021.05.242.
  • Yilmaz, N. D., M. Sulak, K. Yilmaz, and F. Kalin. 2016. Physical and chemical properties of water retted fibers extracted from different locations in corn husks. Journal of Natural Fibers 13 (4):397–409. doi:10.1080/15440478.2015.1029201.
  • Yilmaz, N. D., M. Sulak, K. Yılmaz, and G. M. Khan. 2017. Effect of chemical treatments on physico-chemical properties of fibers from banana fruit and bunch stems. Indian Journal of Fiber and Textile Research 42:111‑17.