1,642
Views
2
CrossRef citations to date
0
Altmetric
Research Article

The Effect of Microcrystalline Cellulose on the Physical, Thermal, and Mechanical Properties of Composites Based on Cantala Fiber and Recycled High-Density Polyethylene

, &

References

  • Beroual, M., L. Boumaza, O. Mehelli, D. Trache, A. Fouzi Tarchoun, and K. Khimeche. 2021. Physicochemical properties and thermal stability of microcrystalline cellulose isolated from esparto grass using different delignification approaches. Journal of Polymers and the Environment 29 (1):130–16. doi:10.1007/s10924-020-01858-w.
  • Bessa, W., D. Trache, M. Derradji, and A. Fouzi Tarchoun. 2022. Kevlar fabric reinforced polybenzoxazine composites filled with silane treated microcrystalline cellulose in the interlayers: The next generation of multi-layered armor panels. Defence Technology 18 (11):2000–07. doi:10.1016/j.dt.2021.10.005.
  • Bhasney, S. M., K. Mondal, A. Kumar, and V. Katiyar. 2020. Effect of microcrystalline cellulose [MCC] fibres on the morphological and crystalline behaviour of high density polyethylene [HDPE]/polylactic acid [PLA] blends. Composites Science and Technology 187 (107941):1–8. doi:10.1016/j.compscitech.2019.107941.
  • Boudjellal, A., D. Trache, K. Khimeche, S. Lotfi Hafsaoui, and M. Seddik Razali. 2022. Preparation and characterization of graphene oxide-based natural hybrids containing alfa fibers or microcrystalline cellulose. Journal of Natural Fibers 19 (13):5321–32. doi:10.1080/15440478.2021.1875373.
  • Cataldi, A., F. Deflorian, and A. Pegoretti. 2015. Microcrystalline cellulose filled composites for wooden artwork consolidation: Application and physic-mechanical characterization. Materials & Design 83:611–19. doi:10.1016/j.matdes.2015.06.037.
  • Chen, J., X. Wang, Z. Long, S. Wang, J. Zhang, and L. Wang. 2020. Preparation and performance of thermoplastic starch and microcrystalline cellulose for packaging composites: Extrusion and hot pressing. International Journal of Biological Macromolecules 165:2295–302. doi:10.1016/j.ijbiomac.2020.10.117.
  • Collazo-Bigliardi, S., R. Ortega-Toro, and A. Chiralt Boix. 2018. Isolation and characterisation of microcrystalline cellulose and cellulose nanocrystals from coffee husk and comparative study with rice husk. Carbohydrate Polymers 191:205–15. doi:10.1016/j.carbpol.2018.03.022.
  • Darus, N., M. Tamimi, S. Tirawaty, M. Muchtazar, D. Trisyanti, R. Akib, D. Condorini, and K. Ranggi. 2020. An overview of plastic waste recycling in the urban areas of java Island in Indonesia. Journal of Environmental Science and Sustainable Development 3 (2):402–15. doi:10.7454/jessd.v3i2.1073.
  • Dou, Y., and D. Rodrigue. 2022. Morphological, thermal and mechanical properties of recycled HDPE foams via rotational molding. Journal of Cellular Plastics 58 (2):305–23. doi:10.1177/0021955X211013793.
  • Gabr, M. H., N. T. Phong, K. Okubo, K. Uzawa, I. Kimpara, and T. Fujii. 2014. Thermal and mechanical properties of electrospun nano-cellulose reinforced epoxy nanocomposites. Polymer Testing 37:51–58. doi:10.1016/j.polymertesting.2014.04.010.
  • Gao, S. L., and J. Kyo Kim. 2000. Cooling rate influences in carbon fibre/PEEK composites. Part 1. Crystallinity and interface adhesion. Composites Part A, Applied Science and Manufacturing 31 (6):517–30. doi:10.1016/S1359-835X(00)00009-9.
  • Haafiz, M. K. M., A. Hassan, I. M. I. Zzainoha Zakaria, M. S. Islam, M. Jawaid, and M. Jawaid. 2013. Properties of polylactic acid composites reinforced with oil palm biomass microcrystalline cellulose. Carbohydrate Polymers 98:139–45. doi:10.1016/j.carbpol.2013.05.069.
  • Hong, S. H., and S. Ho Hwang. 2021. Enhancing the mechanical performance of surface-modified microcrystalline cellulose reinforced high-density polyethylene composites. Materials Today Communications 27 (102426):1–6. doi:10.1016/j.mtcomm.2021.102426.
  • Jabbar, A., J. Militký, J. Wiener, B. Madhukar Kale, U. Ali, and S. Rwawiire. 2017. Nanocellulose coated woven jute/green epoxy composites: Characterization of mechanical and dynamic mechanical behavior. Composite Structures 161:340–49. doi:10.1016/j.compstruct.2016.11.062.
  • Karakus, K., İ. Atar, İ. Halil Basboga, F. Bozkurt, and F. Mengleloglu. 2017. Wood ash and microcrystalline cellulose (MCC) filled unsaturated polyester composites. Kastamonu University Journal of Forestry Faculty 17 (2):282–89. doi:10.17475/kastorman.297702.
  • Kiziltas, A., D. J. Gardner, Y. Han, and H. Seung Yang. 2014. Mechanical properties of microcrystalline cellulose (MCC) filled engineering thermoplastic composites. Journal of Polymers and the Environment 22 (3):365–72. doi:10.1007/s10924-014-0676-5.
  • Koniuszewska, A. G., and J. W. Kaczmar. 2016. Application of polymer based composite materials in transportation. Progress in Rubber, Plastics and Recycling Technology 32 (1):1–23. doi:10.1177/147776061603200101.
  • Lazrak, C., B. Kabouchi, and M. Hammi. 2019. Case studies in construction materials structural study of maritime pine wood and recycled high-density polyethylene (hdper) plastic composite using infrared-atr spectroscopy, X-ray diffraction, sem and contact angle measurements. Case Studies in Construction Materials 10 (e00227):1–11.
  • Lei, Y., W. Qinglin, Y. Fei, and X. Yanjun. 2007. Preparation and properties of recycled HDPE/natural fiber composites. Composites Part A, Applied Science and Manufacturing 38 (7):1664–74. doi:10.1016/j.compositesa.2007.02.001.
  • Mathew, A. P., K. Oksman, and M. Sain. 2005. Mechanical properties of biodegradable composites from Poly Lactic Acid (PLA) and microcrystalline cellulose (MCC). Journal of Applied Polymer Science 97 (5):2014–25. doi:10.1002/app.21779.
  • Mubarak, Y. A. 2018. Tensile and impact properties of microcrystalline cellulose nanoclay polypropylene composites. International Journal of Polymer Science 2018:1–14. doi:10.1155/2018/1708695.
  • Mubarak, Y. A., and R. Talal Abdulsamad. 2019. Effects of microcrystalline cellulose on the mechanical properties of low-density polyethylene composites. Journal of Thermoplastic Composite Materials 32 (3):297–311. doi:10.1177/0892705717753056.
  • Pichandi, S., S. Rana, S. Parveen, and R. Fangueiro. 2018. A green approach of improving interface and performance of plant fibre composites using microcrystalline cellulose. Carbohydrate Polymers 197:137–46. doi:10.1016/j.carbpol.2018.05.074.
  • Radzi, A. M., S. M. Sapuan, M. Jawaid, and M. R. Mansor. 2019. Effect of alkaline treatment on mechanical, physical and thermal properties of roselle/sugar palm fiber reinforced thermoplastic polyurethane hybrid composites. Fibers and Polymers 20 (4):847–55. doi:10.1007/s12221-019-1061-8.
  • Raharjo, W. W., R. Soenoko, Y. Surya Irawan, and A. Suprapto. 2018. The influence of chemical treatments on cantala fiber properties and interfacial bonding of cantala fiber/recycled high density polyethylene (RHDPE). Journal of Natural Fibers 15 (1):98–111. doi:10.1080/15440478.2017.1321512.
  • Rehman, M. M., M. Zeeshan, K. Shaker, and Y. Nawab. 2019. Effect of micro-crystalline cellulose particles on mechanical properties of alkaline treated jute fabric reinforced green epoxy composite. Cellulose 26 (17):9057–69. doi:10.1007/s10570-019-02679-4.
  • Reza, A., A. Hassan, M. K. Mohamad Haafiz, Z. Zakaria, and I. M. Inuwa. 2014. Characterization of polylactic acid/microcrystalline cellulose/montmorillonite hybrid composites. Malaysian Journal of Analytical Sciences 18 (December):642–50.
  • Saiello, S., J. Kenny, and L. Nicolais. 1990. Interface morphology of carbon fibre/PEEK composites. Journal of Materials Science 25:3493–96. doi:10.1007/BF00575375.
  • Sullins, T., S. Pillay, A. Komus, and H. Ning. 2017. Hemp fiber reinforced polypropylene composites: The effects of material treatments. Composites Part B: Engineering 114 (April):15–22. doi:10.1016/j.compositesb.2017.02.001.
  • Sunardi, S., W. Tyas Istikowati, N. Norhidayah, D. Ariyani, and A. Kamari. 2021. Characterization of microcrystalline cellulose from fast-growing species Artocarpus elasticus. Sustinere: Journal of Environment and Sustainability 5 (1):1–8. doi:10.22515/sustinere.jes.v5i1.156.
  • Tamrin, and J. Nurdiana. 2021. The effect of recycled hdpe plastic additions on concrete performance. Recycling 6 (1):1–19. doi:10.3390/recycling6010018.
  • Zelaziński, T., J. Słoma, J. Skudlarski, and A. Ekielski. 2020. The rape pomace and microcrystalline cellulose composites made by press processing. Sustainability (Switzerland) 12 (4):1–15. doi:10.3390/su12041311.
  • Zulnazri, Z., R. Dewi, and N. Sylvia. 2020. Modification of recycled HDPE composite with OPEFB microfibers through the melt blend extruder process. Jurnal IPTEK 24 (2):105–12. doi:10.31284/j.iptek.2020.v24i2.928.