3,653
Views
6
CrossRef citations to date
0
Altmetric
Review

Research Progress and Application of Natural Fiber Composites

, , , , &

References

  • Abu Seman, S. A. H., R. Ahmad, and H. Md Akil. 2019. Experimental and numerical investigations of kenaf natural fiber reinforced composite subjected to impact loading. Polymer Composites 40 (3):909–18. doi:10.1002/pc.24758.
  • Al-Oqla, F. M., S. M. Sapuan, T. Anwer, M. Jawaid, and M. E. Hoque. 2015. Natural fiber reinforced conductive polymer composites as functional materials: A review. Synthetic Metals 206:42–54. doi:10.1016/j.synthmet.2015.04.014.
  • Andersons, J., E. Poriķe, and E. Spārniņš. 2011. Modeling strength scatter of elementary flax fibers: The effect of mechanical damage and geometrical characteristics. Composites Part A: Applied Science and Manufacturing 42 (5):543–49. doi:10.1016/j.compositesa.2011.01.013.
  • Angelov, I., S. Wiedmer, M. Evstatiev, K. Friedrich, and G. Mennig. 2007. Pultrusion of a flax/polypropylene yarn. Composites Part A: Applied Science and Manufacturing 38 (5):1431–38. doi:10.1016/j.compositesa.2006.01.024.
  • Arao, Y., S. Nakamura, Y. Tomita, K. Takakuwa, T. Umemura, and T. Tanaka. 2014. Improvement on fire retardancy of wood flour/polypropylene composites using various fire retardants. Polymer Degradation and Stability 100:79–85. doi:10.1016/j.polymdegradstab.2013.12.022.
  • Arbelaiz, A., U. Txueka, I. Mezo, and A. Orue. 2020. Biocomposites based on poly (lactic acid) matrix and reinforced with lignocellulosic fibers: The effect of fiber type and matrix modification. Journal of Natural Fibers 19 (1):1–14. doi:10.1080/15440478.2020.1726247.
  • Bajwa, D. S., and S. Bhattacharjee. 2016. Current progress, trends and challenges in the application of biofiber composites by automotive industry. Journal of Natural Fibers 13:660–69.
  • Balla, V. K., K. H. Kate, J. Satyavolu, P. Singh, and J. G. D. Tadimeti. 2019. Additive manufacturing of natural fiber reinforced polymer composites: Processing and prospects. Composites Part B: Engineering 174:106956. doi:10.1016/j.compositesb.2019.106956.
  • Beckermann, G. W., and K. L. Pickering. 2009. Engineering and evaluation of hemp fibre reinforced polypropylene composites: Micro-mechanics and strength prediction modelling. Composites Part A, Applied Science and Manufacturing 40 (2):210–17. doi:10.1016/j.compositesa.2008.11.005.
  • Beijing Yubo Zhiye Market Consulting Co., Ltd. 2022. Research report on the development status and investment prospects of natural fiber reinforced polymer composite industry in the world and China (2022-2026).
  • Bledzki, A. K., and J. Gassan. 1999. Composites reinforced with cellulose based fibers. Progress in Polymer Science 24 (2):221–74. doi:10.1016/S0079-6700(98)00018-5.
  • Bucur, V. 2016. Handbook of materials for string musical instruments. Basel: Springer International Publishing.
  • Buetuen, F. Y., P. Sauerbier, H. Militz, and C. Mai. 2019. The effect of fiberboard (MDF) disintegration technique on wood polymer composites (WPC) produced with recovered wood particles. Composites Part A: Applied Science and Manufacturing 118:312–16. doi:10.1016/j.compositesa.2019.01.006.
  • Chapple, S., and R. Anandjiwala. 2010. Flammability of natural fiber-reinforced composites and strategies for fire retardancy: A review. Journal of Thermoplastic Composite Materials 23:871–93. doi:10.1177/0892705709356338.
  • Chee, S. S., M. Jawaid, M. T. H. Sultan, O. Y. Alothman, and L. C. Abdullah. 2019. Thermomechanical and dynamic mechanical properties of bamboo/woven kenaf mat reinforced epoxy hybrid composites. Composites Part B: Engineering 163:165–74. doi:10.1016/j.compositesb.2018.11.039.
  • Chen, J. C. 2018. Green and efficient use of fiber resources in the era of resource shortage. China Pulp & Paper Industry 39:44–49.
  • Chen, Z., J. Jiang, Y. Yu, G. Chen, T. Chen, and Q. Zhang. 2021. Layer-by-layer assembled bagasse to enhance the fire safety of epoxy resin: A renewable environmental friendly flame retardant. Journal of Applied Polymer Science 138:50032. doi:10.1002/app.50032.
  • Chen, G., T. Li, C. Chen, W. Kong, M. Jiao, B. Jiang, Q. Xia, Z. Liang, Y. Liu, S. He, et al. 2021. Scalable wood hydrogel membrane with nanoscale channels. ACS Nano 15:11244–52. doi:10.1021/acsnano.0c10117.
  • Chen, G., T. Li, C. Chen, C. Wang, Y. Liu, W. Kong, D. Liu, B. Jiang, S. He, Y. Kuang, et al. 2019. A highly conductive cationic wood membrane. Advanced Functional Materials 29:1902772. doi:10.1002/adfm.201902772.
  • Ciesielski, P. N., M. B. Pecha, A. M. Lattanzi, V. S. Bharadwaj, M. F. Crowley, L. Bu, J. V. Vermaas, K. X. Steirer, and M. F. Crowley. 2020. Advances in multiscale modeling of lignocellulosic biomass. ACS Sustainable Chemistry & Engineering 8:3512–31. doi:10.1021/acssuschemeng.9b07415.
  • Das, O., K. Babu, V. Shanmugam, K. Sykam, M. Tebyetekerwa, R. E. Neisiany, M. Försth, G. Sas, J. Gonzalez-Libreros, A. J. Capezza, et al. 2022. Natural and industrial wastes for sustainable and renewable polymer composites. Renewable and Sustainable Energy Reviews 158:112054. doi:10.1016/j.rser.2021.112054.
  • Ding, L., X. Han, L. Cao, Y. Chen, Z. Ling, J. Han, S. He, and S. Jiang. 2022. Characterization of natural fiber from manau rattan (Calamus manan) as a potential reinforcement for polymer-based composites. Journal of Bioresources and Bioproducts 7:190–200. doi:10.1016/j.jobab.2021.11.002.
  • Duigou, A. L., A. Barbé, E. Guillou, and M. Castro. 2019. 3D printing of continuous flax fiber reinforced biocomposites for structural applications. Materials & Design 180:107884. doi:10.1016/j.matdes.2019.107884.
  • Gholampour, A., and T. Ozbakkaloglu. 2020. A review of natural fiber composites: Properties, modification and processing techniques, characterization, applications. Journal of Materials Science 55:829–92. doi:10.1007/s10853-019-03990-y.
  • Grande, C., and F. G. Torres. 2005. Investigation of fiber organization and damage during single screw extrusion of natural fiber reinforced thermoplastics. Advances in Polymer Technology 24:145–56. doi:10.1002/adv.20037.
  • Hao, W., M. Wang, F. Zhou, H. Luo, X. Xie, F. Luo, and R. Cha. 2020. A review on nanocellulose as a lightweight filler of polyolefin composites. Carbohydrate Polymers 243:116466. doi:10.1016/j.carbpol.2020.116466.
  • Kannan, G., and R. Thangaraju. 2022. Recent progress on natural lignocellulosic fiber reinforced polymer composites: A review. Journal of Natural Fibers 19:7100–31. doi:10.1080/15440478.2021.1944425.
  • Kim, Y., and O. O. Park. 2020. Effect of fiber length on mechanical properties of injection molded long-fiber-reinforced thermoplastics. Macromolecular Research 28:433–44. doi:10.1007/s13233-020-8056-6.
  • Li, T., C. Chen, A. H. Brozena, J. Y. Zhu, L. Xu, C. Driemeier, J. Dai, O. J. Rojas, A. Isogai, L. Wågberg, et al. 2021. Developing fibrillated cellulose as a sustainable technological material. Nature 590:47–56. doi:10.1038/s41586-020-03167-7.
  • Li, T., H. Liu, X. Zhao, G. Chen, J. Dai, G. Pastel, C. Jia, C. Chen, E. Hitz, D. Siddhartha, et al. 2018. Scalable and highly efficient mesoporous wood-based solar steam generation device: Localized heat, rapid water transport. Advanced Functional Materials 28:1707134. doi:10.1002/adfm.201707134.
  • Li, Q., Y. Li, Z. Zhang, Z. Zhang, and L. Zhou. 2020a. Quantitative investigations on multi-layer interface debonding behaviors for sisal fiber reinforced composites using acoustic emission and finite element method. Composites Part B 196:108128. doi:10.1016/j.compositesb.2020.108128.
  • Li, Q., Y. Li, Z. Zhang, and L. Zhou. 2020b. Multi-layer interfacial fatigue and interlaminar fracture behaviors for sisal fiber reinforced composites with nano- and macro-scale analysis. Composites Part A 135:105911. doi:10.1016/j.compositesa.2020.105911.
  • Li, X., L. Tabil, and S. Panigrahi. 2007. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review. Journal of Polymers and the Environment 15:25–33. doi:10.1007/s10924-006-0042-3.
  • Liu, X. Y. 2007. Approach to high performance of jute fiber mat reinforced polypropylene and its manufacturing technology. Ph.D. thesis. Shanghai, East China University of Science and Technology.
  • Li, T., Y. Zhai, S. He, W. Gan, Z. Wei, M. Heidarinejad, D. Dalgo, R. Mi, X. Zhao, J. Song, et al. 2019. A radiative cooling structural material. Science 364:760–63. doi:10.1126/science.aau9101.
  • Mandeep, K., S. Praveen, and K. Santosh. 2021. State of art manufacturing and producing nanocellulose from agricultural waste: A review. Journal of Nanoscience and Nanotechnology 21 (6):3394–403. doi:10.1166/jnn.2021.19006.
  • Manral, A., and P. K. Bajpai. 2020. Static and dynamic mechanical analysis of geometrically different kenaf/PLA green composite laminates. Polymer Composites 41:691–706. doi:10.1002/pc.25399.
  • Mi, R., C. Chen, T. Keplinger, Y. Pei, S. He, D. Liu, J. Li, J. Dai, E. Hitz, B. Yang, et al. 2020. Scalable aesthetic transparent wood for energy efficient buildings. Nature Communications 11:3836. doi:10.1038/s41467-020-17513-w.
  • Mohanty, A. K., M. Misra, and L. T. Drzal. 2001. Surface modifications of natural fibers and performance of the resulting biocomposites: An overview. Composite Interfaces 8:313–43. doi:10.1163/156855401753255422.
  • Mohanty, A. K., M. Misra, and L. T. Drzal. 2002. Sustainable bio-composites from renewable resources: Opportunities and challenges in the green materials world. Journal of Polymers and the Environment 10:19–26. doi:10.1023/A:1021013921916.
  • Nurul Fazita, M. R., K. Jayaraman, D. Bhattacharyya, M. K. Mohamad Haafiz, C. K. Saurabh, M. H. Hussin, and K. H. P. S. Abdu. 2016. Green composites made of bamboo fabric and poly (Lactic) acid for packaging applications—a review. Materials 9 (6):435. doi:10.3390/ma9060435.
  • Phillips, S., and L. Lessard. 2009. Proceedings of 17th ICCM International Conference on Composite Materials, 27–31: flax fibers in musical instrument soundboards. Edinburgh, England.
  • Phillips, S., and L. Lessard. 2011. Application of natural fiber composites to musical instrument top plates. Journal of Composite Materials 46 (2):145–54. doi:10.1177/0021998311410497.
  • Pickering, K. L. 2008. Properties and performance of natural fiber composites. Cambridge: Woodhead Publishing Limited.
  • Pickering, K. L., M. G. A. Efendy, and T. M. Le. 2016. A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A, Applied Science and Manufacturing 83:98–112. doi:10.1016/j.compositesa.2015.08.038.
  • Potluri, R., V. Diwakar, K. Venkatesh, and B. S. Reddy. 2018. Analytical model application for prediction of mechanical properties of natural fiber reinforced composites. Materials Today: Proceedings 5: 5809–18
  • Raj, R. G., and B. V. Kokta. 1991. Compression molding of HDPE-wood fiber composites: Effect of processing conditions on mechanical properties. Science and Engineering of Composite Materials 2:1–10. doi:10.1515/SECM.1991.2.1.1.
  • Saheb, D. N., and J. P. Jog. 1999. Natural fiber polymer composites: A review. Advances in Polymer Technology 18:351–63. doi:10.1002/(SICI)1098-2329(199924)18:4<351:AID-ADV6>3.0.CO;2-X.
  • Santulli, C. 2019. Mechanical and impact damage analysis on carbon/natural fibers hybrid composites: A review. Materials 12:517. doi:10.3390/ma12030517.
  • Sekar, S., S. S. Kumar, S. Vigneshwaran, and G. Velmurugan. 2022. Evaluation of mechanical and water absorption behavior of natural fiber-reinforced hybrid biocomposites. Journal of Natural Fibers 19:1772–82. doi:10.1080/15440478.2020.1788487.
  • Sharma, A., M. Thakur, M. Bhattacharya, T. Mandal, and S. Goswami. 2019. Commercial application of cellulose nano-composites – a review. Biotechnology Reports 21:e00316. doi:10.1016/j.btre.2019.e00316.
  • Shi, Z., S. Li, M. Li, L. Gan, and J. Huang. 2021. Surface modification of cellulose nanocrystals towards new materials development. Journal of Applied Polymer Science 138:51555. doi:10.1002/app.51555.
  • Siakeng, R., M. Jawaid, H. Ariffin, S. M. Sapuan, M. Asim, and N. Saba. 2019. Natural fiber reinforced polylactic acid composites: A review. Polymer Composites 40:446–63. doi:10.1002/pc.24747.
  • Sun, Z. Y. 2010. The improvement and prediction of the mechanical properties of natural fiber reinforced thermoplastic composites. Ph.D. thesis. Shanghai, East China University of Science and Technology.
  • Sun, Z. Y., X. Zhang, X. Wang, S. Liang, N. Li, and H. An. 2022. Progress in research on natural cellulosic fiber modifications by polyelectrolytes. Carbohydrate Polymers 278:118966. doi:10.1016/j.carbpol.2021.118966.
  • Sun, Z. Y., X. Y. Zhao, X. Wang, and J. S. Ma. 2014. Multiscale modeling of the elastic properties of natural fibers based on a generalized method of cells and laminate analogy approach. Cellulose 21:1135–41. doi:10.1007/s10570-014-0201-y.
  • Tahir, F., M. A. Saeed, and U. Ali. 2023. Biomass energy perspective in Pakistan based on chemical looping gasification for hydrogen production and power generation. International Journal of Hydrogen Energy. doi:10.1016/j.ijhydene.2023.01.247.
  • Tham, M. W., N. M. R. Fazita, H. P. S. Abdul Khalil, N. Z. Mahmud Zuhudi, M. Jaafar, S. Rizal, and M. K. M. Haafiz. 2019. Tensile properties prediction of natural fiber composites using rule of mixtures: A review. Journal of Reinforced Plastics and Composites 38 (5):211–48. doi:10.1177/0731684418813650.
  • Thomason, J. L. 2002. The influence of fibre length and concentration on the properties of glass fibre reinforced polypropylene: 5. Injection moulded long and short fibre PP. Composites Part A, Applied Science and Manufacturing 33 (12):1641–52. doi:10.1016/S1359-835X(02)00179-3.
  • Thomason, J. L., and M. A. Vlug. 1996. Influence of fibre length and concentration on the properties of glass fibre-reinforced polypropylene: 1. Tensile and flexural modulus. Composites Part A, Applied Science and Manufacturing 27 (6):477–84. doi:10.1016/1359-835X(95)00065-A.
  • Thomason, J. L., M. A. Vlug, G. Schipper, and H. G. L. T. Krikor. 1996. Influence of fiber length and concentration on the properties of glass fiber-reinforced polypropylene: Part 3. Strength and strain at failure. Composites Part A: Applied Science and Manufacturing 27 (11):1075–84. doi:10.1016/1359-835X(96)00066-8.
  • Villamil Jiménez, J. A., N. Le Moigne, J. C. Bénézet, M. Sauceau, R. Sescousse, and J. Fages. 2020. Foaming of PLA composites by supercritical fluid-assisted processes: A review. Molecules 25 (15):3408. doi:10.3390/molecules25153408.
  • Vinod, A., M. R. Sanjay, and S. Siengchin. 2023. Recently explored natural cellulosic plant fibers 2018–2022: A potential raw material resource for lightweight composites. Industrial Crops and Products 192:116099. doi:10.1016/j.indcrop.2022.116099.
  • Wågberg, L. 2000. Polyelectrolyte adsorption onto cellulose fibres – a review. Nordic Pulp and Paper Research Journal 15 (5):586–97. doi:10.3183/npprj-2000-15-05-p586-597.
  • Wågberg, L., and J. Erlandsson. 2020. The use of layer-by-layer self-assembly and nanocellulose to prepare advanced functional materials. Advanced Materials 33 (28):2001474. doi:10.1002/adma.202001474.
  • Yi, X. S., and Y. Li. 2017. Biomass resin, fiber and biocomposite materials. Beijing: China Building Materials Industry Press.
  • Zhang, H. G., D. Liu, T. L. Huang, Q. Hu, and H. Lammer. 2020. 3D printing method of spatial curved surface by continuous natural fiber reinforced composite. IOP Conference Series: Materials Science and Engineering, 782: 022059.
  • Zhu, M., C. Jia, Y. Wang, Z. Fang, J. Dai, L. Xu, D. Huang, J. Wu, Y. Li, J. Song, et al. 2018. Isotropic paper directly from anisotropic wood: Top-down green transparent substrate toward biodegradable electronics. ACS Applied Materials & Interfaces 10:28566–71. doi:10.1021/acsami.8b08055.
  • Zhu, J., and X. Liu. 2018. Biobased polymer materials. Beijing: Science Press.
  • Zhu, Q. Q., Q. Yao, J. Z. Sun, H. L. Chen, W. H. Xu, J. Liu, and Q. Q. Wang. 2020. Stimuli induced cellulose nanomaterials alignment and its emerging applications: A review. Carbohydrate Polymers 230:115609. doi:10.1016/j.carbpol.2019.115609.
  • Zwawi, M. 2021. A review on natural fiber bio-composites, surface modifications and applications. Molecules 26:404. doi:10.3390/molecules26020404.